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Abstract: Deep learning (DL) has emerged as a powerful tool for air quality forecasting, yet 

achieving consistently high predictive accuracy remains a significant challenge. In order to improve 

the air quality and its index forecasts, a number of models have been used, with some adopting the 

hybridization approaches. In this research, Convolutional Neural Networks (CNNs) and Artificial 

Neural Networks (ANNs) capabilities are combined to present a deep learning-based ensemble 

technique for simulating air quality dynamics using historical environmental data. The CNNs 

Model  enhance the effectiveness of the ensemble model by extracting spatial information that can 

raise the accuracy of air quality dynamics predictions. Furthermore, the model's capacity to 

recognize intricate spatial-temporal patterns in environmental data is improved when CNNs are 

combined with artificial neural networks. Air quality dataset is used to train the proposed model 

and other deep learning models, including Convolutional Neural Networks (CNNs), Artificial 

Neural Networks (ANNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory 

(LSTM) used to predict air quality. The pre-processing techniques such as removing missing values, 

categorical value handling and label encoding, are applied on the dataset to enhance input quality. 

The proposed ensemble method is compared with other deep learning models and shows 

substantially better accuracy, precision, recall, and F1-score are 0.9985, 0.9988, 0.9984, and 0.9986, 

respectively. These validated deep learning-based models in air quality prediction can provide 

valuable insights for authorities and environmental organizations, supporting the development of 

data-driven pollution control measures and public health initiatives. 
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1. Introduction 

The environment, crops, and human health are all at risk from harmful air pollutants, which include 

dust, smoke, and gasses like sulfur dioxide and carbon monoxide. As cities and industries grow, the issue 

has gotten worse. It's interesting to note that this pollution is directly impacted by local weather [1].  The 

way pollution spreads and builds up is influenced by temperature, wind patterns, and humidity levels.  

For instance, while sluggish conditions cause polluted air to persist, powerful breezes can disperse it [2].  

Communities and governments can take more intelligent measures to safeguard public health by 

comprehending these links and enhancing air quality forecasts [3].  

The prediction ability of the Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), and 

Long Short-Term Memory (LSTM) models for specific air pollutants like Particulate Matter 10 (PM10) and 

Sulfur Dioxide (SO2) has also been assessed using metrics like R-squared (R2), Mean Absolute Error 
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(MAE), Root Mean Square Error (RMSE), and Mean Squared Error (MSE). The accuracy of LSTM models 

was higher than that of MLP and RNN models. The LSTM model accurately forecasts PM10 and SO2 

concentrations, according to tests comparing its efficacy to other candidates identified in the literature. This 

study provides intriguing new information about the application of deep learning models to pollution 

prediction [4].  

They excel in air quality forecasting because they can depict complex temporal relationships, identify 

sequential dependencies, and account for missing data. In order to improve forecasting, the LSTM and 

Bidirectional Long Short-Term Memory (BiLSTM) networks introduce fresh pollution data into the LSTM 

and discard crucial information from previous observations due to weather and pollution [5]. Depending 

on the architectures, characteristics, and quality of the data, several experimental configurations are 

required to calibrate these models [6]. Machine learning and deep learning outperform traditional methods 

in handling large and complex data, uncovering intricate patterns, and accurately identifying pollution 

sources through remote sensing [7]. For regulating air quality in the context of urban planning and policy 

making, this provides them some data-driven and economical possibilities [8].  

Wu & Lin (2019) showed that this simplified RNN variant can outperform regular LSTM (88.65%) 

while approaching RNN performance (94.73%) with an accuracy of 93.56% in air quality forecasting 

utilizing Gated Recurrent Units (GRUs) [9]. The findings demonstrate how well GRUs explain temporal 

pollution patterns using less computing power than LSTM, providing a well-rounded approach for time-

series environmental data [10]. This study demonstrates that gated recurrent architectures are still viable 

options for sequential tasks involving the prediction of air quality [34].  

Furthermore, predict the amount of ozone in Murcia's air quality was started in 2018. Artificial Neural 

Networks (ANNs), Decision Tree (DT), RF, and Logistic Regression (LR) were the four regression 

approaches that were utilized to forecast air quality using machine-learning algorithms [11]. Evaluating 

processing time and data quantities was the first step in creating the criterion for the optimal technique 

baseline. In terms of the accuracy of air quality forecasts, random forest regression outperformed the other 

datasets, which varied in size, location, and feature [12]. 

Time-series prediction, object identification, speech recognition, and classification are the large data 

analytical problems that have previously been tackled with deep learning approaches. These approaches 

utilized for the prediction of the data that can be handled in the condition of data [13]. Deep learning 

techniques have shown promising outcomes that utilized in the majority of relevant research studies 

addressing air pollution prediction. LSTM-fully connected neural network, a deep learning model 

designed to forecast the concentration of particle pollution at certain monitoring stations during a 48-hour 

period [14]. 

Due to their inability to handle spatial-temporal dependencies, noise, and missing data, traditional air 

quality prediction models are unable to adequately represent the intricate, nonlinear relationships between 

pollution levels and environmental factors [15]. In order to overcome these obstacles and increase the 

accuracy of air quality forecasts, this research intends to use the ensemble deep learning techniques by 

incorporate the features of CNN and ANN that effectively captures spatial features and complex 

interactions to improve predictive accuracy. This will help with improved pollution control and public 

health decisions. 

The contribution of this research are as follows: 

• Proposed an ensemble deep learning model that combine convolutional neural networks for spatial 

feature extraction and artificial neural networks for learning complex relationship for modeling air 

quality dynamics. 

• The preprocessing methods applied include handling missing values, categorical data encoding, and 

label encoding to ensure high-quality input for model training. 

• Developed and tested CNN, ANN, RNN, and LSTM models for air quality prediction using historical 

environmental data. 

• The performance of proposed model is evaluated used key evaluation metrics such as precision, recall, 

accuracy, and f1 score to assess their effectiveness in forecasting air quality dynamics.  

The rest of the paper is summarize as follows: Section 2 presented the related work that are relevant 

to the proposed methodology. Section 3 explain the research methodology in which the ensemble deep 
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learning model based on CNN and ANN is proposed. Section 4 discusses the results and discussion of 

proposed study. Section 5 represent the conclusion and future work of this research. 

 

2. Related Work 

In several instances, air pollution levels have been predicted through the significant use of statistical 

and machine learning approaches [16]. RMSE and MAE have been used to assess a number of models using 

data from Kolkata's government-run air pollution monitoring stations [17]. Based on the Holt-Winter 

scheme, the forecasting models indicated above have performed better than PM2.5, PM10, and SO2 time 

series, but better than deep-learning techniques Conv LSTM and Bi-LSTM in NO2 time series data [18]. 

There are different parameters used for the analysis of the selection for the data to predict the result using 

deep neural network model [19][20]. LSTMs are excellent at handling nonlinear interactions and capturing 

long-term patterns since air pollution data is time-dependent [21]. While using the spatial-temporal models 

to account for both time and geographical factors could lead to further improvements which validates the 

use of deep learning for air quality forecasting [22]. This study provides a solid basis for developing 

increasingly complex AI-powered pollution forecasting systems [23]. 

A hybrid CNN-LSTM model is proposed that achieved an accuracy of 89.91% in predicting air quality 

[8]. This model successfully captured both time-dependent and geographic pollution patterns by merging 

LSTM for temporal pattern learning with Convolutional Neural Networks (CNN) for spatial feature 

extraction [24]. This showed that hybrid deep learning architectures can further improve forecasting 

precision, outperforming single LSTM techniques [25]. The findings emphasize to essential is to 

incorporate spatial-temporal analysis into air quality models in order to increase the accuracy of 

predictions [26]. Mao et al. (2021) showed that Recurrent Neural Networks (RNNs) performed better than 

LSTM (88.65%) and CNN-LSTM (89.91%) models, achieving 94.73% accuracy in air quality prediction [27]. 

This increased accuracy shows that RNNs may successfully capture intricate temporal correlations in 

pollution data if they are appropriately optimized [28] [29]. This study establishes a standard for temporal 

modeling in studies on pollution prediction [9]. 

Artificial neural networks can forecast air quality with 92.74% accuracy, surpassing some 

conventional methods. Even though ANNs don't have the same temporal memory as RNNs or LSTMs, 

their excellent performance indicates that they can still be used for some pollution forecasting tasks, 

especially when working with environmental data that has been preprocessed or isn't sequential [30]. 

Although more sophisticated models would be required for complicated spatiotemporal interactions in air 

quality data, offers a crucial benchmark by demonstrating comparable results using deep learning [31]. 

Bidirectional LSTM (BLSTM) was used to forecast air quality and an accuracy of 92.62%. By processing 

data both forward and backward, BLSTMs outperform conventional LSTMs in capturing more thorough 

temporal interdependence in pollution trends [32]. This finding shows that BLSTMs are better at modeling 

complex time-series patterns, which makes them especially helpful for assessing changing pollution levels 

with delayed atmospheric impacts [33]. The study demonstrates how temporal feature learning in 

environmental forecasting problems can be improved via bidirectional designs. 

Gated Recurrent Units (GRUs) proves the practical substitute for LSTMs when utilized to predict air 

quality with 93.56% accuracy [30]. By integrating forget and input gates into a single update gate, GRUs 

streamline the gating process of conventional LSTMs while preserving similar temporal modeling 

performance [10]. This architecture is especially well-suited for real-time forecasting systems since it 

effectively catches both long-term seasonal trends and short-term pollution spikes without the processing 

expense of LSTMs [34] [35]. Furthermore, artificial neural networks to estimate air quality with 92.74% 

accuracy, showing that ANNs don't have built-in temporal memory and it can nevertheless model 

complicated pollution patterns [36]. This is especially true when temporal dependencies are pre-processed 

or when feature engineering techniques are used [37]. The Summary of related work shown in Table 1. 

Table Error! No text of specified style in document.1. Summary of the Related Work 

References Models Accuracy 

[38] LSTM 88.65% 

[39] CNN-LSTM 89.91% 
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[40] RNN 94.73% 

[41] ANN 92.74% 

[42] GRU 93.56% 

[43] BLSTM 92.62% 

 

3. Proposed Methodology 

The goal of air quality modeling is to provide as much information as possible on the many health 

and environmental effects that influence pollution levels. For deep learning models to be trained using 

regularly and reliably prepared data, the present interface must be preprocessed. In order to prevent data 

loss, this stage manages the missing values in a way that allows any imputation approaches to be used. In 

order to fit the model, categorical data is encoded using label encoding. Following processing, the data is 

divided into training and test datasets, with 80% going toward training and 20% going toward testing the 

created model. Several deep learning models, including CNN, ANN, RNN, and LSTM, have been required 

for forecasting air quality. Each model looks for any hidden patterns in the data on air pollution underwent 

testing and training. To improve prediction accuracy, the ensemble deep learning model based CNN and 

ANN is proposed. In order to differentiate in its non-trivial interrelations, the ANN learns to apply spatial 

features that CNN inherits from the dataset. The ensemble architecture outperforms all of the current 

architectures in terms of prediction by combining the best features of both systems. The performance 

metrics including recall, accuracy, and precision are used to evaluate the proposed method. These 

measurements' outcomes are also useful for predicting air quality. Figure 1 shows the proposed 

methodology. 

 
Figure 1. Proposed Methodology 

3.1. Dataset Description 

The data collected from this dataset demonstrates the air quality and its probable health effects varies 

in several areas, including Queens, Brooklyn, the Bronx, Manhattan, and Staten Island. It records seasonal 

and annual averages, allowing comparison of air pollution levels and associated health issues across 

summer, winter, and the entire year. While the Name category highlights the main themes as Emissions, 

Asthma-Related, Hospitalizations, and General Pollution, the Unique ID allows each item to be 

individually identified. It also specifies the type of data density, rates, concentration, or miles that should 

be in the Measure column. The location and geographic context of the measurements are specified by the 

Geo Type Name and the Geo Place Name. Seasonal trends are distinguished from yearly trends in the Time 

Period column. The start date denotes when the data gathering process started. The data value is a number 
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that represents pollution or health impact measurements. Last but not least, the Air Quality Category 

outlines the air quality metrics that are used to evaluate its effects on public health. 

3.2. Deep Learning Models 

In order to predict air quality, this study applies and assesses four deep learning architectures. CNN, 

RNN, LSTM, and ANN. The proposed model CNN+ANN combines the strengths of CNNs for spatial 

feature extraction and ANNs for learning complex nonlinear relationships, significantly enhancing air 

quality prediction performance. Trained on comprehensive historical environmental datasets, the model 

effectively identifies subtle pollution dynamics, outperforming standalone. 

3.2.1. Convolutional Neural Networks 

CNN-based air quality model uses 3D spatiotemporal tensors (Time × Latitude × Longitude × 

Features) to analyze pollution patterns across City. The time dimension represents seasonal and annual 

observations, while the spatial dimensions are derived from the dataset's exact location data ('Geo Place 

Name' for borough-level coordinates). The model can identify both geographical hotspots and temporal 

patterns in air pollution since it takes into account a number of parameters, such as pollution levels ,health 

implications (hospitalizations for asthma), and official air quality ratings. This method captures significant 

seasonal fluctuations in the data while preserving the real-world spatial linkages between monitoring 

locations. The design uses convolutional layers with 3×3 kernels to extract spatial patterns from 

geographically dispersed monitoring data after normalizing and interpolating missing values. Max-

pooling is then used to reduce the dimensionality of the input. The CNN model Formula to predict the air 

quality is shown in Equation 1 and graphical representation shows in Figure 1.  Through automated 

feature learning of environmental patterns, this method overcomes the constraints of existing non-spatial 

methods and effectively captures regional pollution trends by examining connections between 

contaminants and meteorological elements across sites. 

 

                  𝒁𝒊, 𝒋, 𝒌 = 𝒎∑𝒏∑𝑿𝒊 + 𝒎, 𝒋 + 𝒏 ⋅ 𝑾𝒎, 𝒏, 𝒌 + 𝒃𝒌                1 

 

Where k is the output feature map for the kth filter at point (i, j). The measurements of air quality that 

average input values into geographic grids are indicated by the notation X_i+m, j+n. The above is known 

as (W_m, n, k) in relation to how the filter (kernel) functions as a feature extractor. The bias term, given the 

k-th filter, is (b_k). As it moves over the input data, the summing iterates across the filter's dimension. 

3.2.2. Artificial Neural Network 

The ability of Artificial Neural Networks (ANNs) to predict the intricate, nonlinear relationships 

between pollution levels and environmental factors makes them the most cutting-edge technology for air 

quality forecasting. Artificial neural networks are made up of interconnected layers of neurons, analyze 

input data, including pollution concentrations, weather conditions, vehicle emissions, and industrial 

activities, to uncover hidden patterns and temporal trends that allow for extremely accurate forecasts. Even 

in cases when interactions are nonlinear or involve several impacting elements, these networks are highly 

effective at identifying complex correlations in air quality data. ANNs can accurately predict future 

circumstances by learning from past pollution records, which supports targeted pollution mitigation 

techniques and early warning systems. The ANN model formula shows in Equation 2. It handle larger and 

more dynamic datasets to the incorporation of deep learning techniques, which has further improved their 

capability and flexibility. ANNs get even higher accuracy when paired with cloud computing and real-

time sensor data, making them essential instruments for public health management and environmental 

monitoring. 

 

                     𝒚 = 𝒇(𝒊 = 𝟏∑𝒏𝒘𝒊𝒙𝒊 + 𝒃)                                     2 

Y represents the air quality projection, maybe this so-called pollution concentration. Temperature, 

humidity, pollution, and other factors may all be inputs to Xi. Wi. b denotes a bias. Wi will then provide 

the input features' contribution. F (⋅) is an activation function, e.g., ReLU or Sigmoid, which is responsible 

for inputting non-linearity to the model. 

3.2.3. Long Short-Term Memory Network 
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Long Short-Term Memory (LSTM) networks are used to forecast air quality by examining emission 

records, weather data, and pollution data from the past. In order to efficiently capture temporal patterns 

and long-term relationships while avoiding vanishing gradient problems, the LSTM architecture makes 

use of memory cells and gating mechanisms (input, forget, output gates). It accurately multi-step forecasts 

are possible by the model's detection of nonlinear correlations between contaminants and environmental 

parameters through the processing of hourly data. This technology outperforms conventional approaches 

and offers trustworthy predictions to enhance public health initiatives and pollution control measures by 

learning complicated temporal dynamics. The LSTM model Mathematical formula shows in Equation 3.  

                      𝑪𝒕 = 𝒇𝒕 ⊙ 𝑪𝒕 − 𝟏 + 𝒊𝒕 ⊙ 𝑪~𝒕                                   3 

Whereas, Ct-1 denotes the cell state of its ancestor, Ct describes the cell state at the moment. We 

discuss C~t, t element-wise multiplication, and forget gate ft, which controls the amount of past data that 

may be retained. The amount of additional data being entered is indicated by the input gate foot.  

3.2.4. Recurrent Neural Network 

An RNN-based system for predicting air quality that analyzes temporal pollution patterns using 

LSTM. In order to capture both short-term spikes and long-term seasonal trends, the system uses 

bidirectional recurrent layers to handle time-aligned pollution and meteorological data.  Time-series 

cross-validation and various accuracy metrics are used to assess model performance, comparing the 

efficacy of each architecture for various forecasting horizons. The RNN model Mathematical formula 

shows in Equation 4. 

                            𝒉𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝒉𝒉𝒕 − 𝟏 + 𝑾𝒙𝒙𝒕 + 𝒃)                        4 

At time t, ht is the hidden state that is capturing historical data because of the prior hidden state. HT-

1. Temperature, humidity, or the amount of a contaminant in the air are examples of inputs that occur at 

time t, denoted by xt. Controlling the hidden states by defining weight matrices Wx that control the 

influence of both current and historical input. The bias term is B. Tanh is the model's activation function 

that ends linearity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ensemble CNN-ANN Model 

3.2.5. Proposed Ensemble Model 

This study develops an ensemble deep learning model by incorporate the ability of CNN and ANN 

to improve air quality forecasting by combining spatial pattern recognition with nonlinear relationship 

modeling. The CNN extracts regional pollution features from environmental data, while the ANN 

processes these along with meteorological inputs to capture complex atmospheric interactions. The 

performance evaluation using accuracy, precision, recall, and RMSE metrics, and the ensemble model 

outperforms individual approaches in handling spatial variability and temporal dynamics. This robust 
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framework enables precise, real-time air quality predictions to support environmental decision-making. 

The proposed CNN-ANN model Mathematical formula shows in equation 5. 

                         𝒀^ = 𝒇𝑨𝑵𝑵(𝒇𝑪𝑵𝑵(𝑿))                                   5 

Where f CNN is the feature extractor that uses the CNN model to extract spatial patterns and 

dependencies from the data, X stands for the input data for air quality (i.e., pollution levels, meteorological 

traits). Typically, features are extracted from any patterns that would support ANN. f ANN defines intricate 

associations by acting on retrieved characteristics. Y^ represents the anticipated value for air quality. 

 

4. Results and Discussion 

This section uses performance indicators including accuracy, precision, recall, and F1-score to assess 

the validity of the suggested model and other deep learning models. While precision lowers false positives 

by calculating the ratio of genuine positives to all anticipated positives, accuracy quantifies the percentage 

of cases that are correctly classified. By contrasting true positives with false negatives, recall assesses the 

model's capacity to consistently identify events. For comparison analysis, the CNN, RNN, LSTM, and ANN 

models were each applied separately in this study. However, our ensemble model based on CNN and 

ANN overcomes the drawbacks of standalone designs by integrating spatial feature extraction with 

nonlinear pattern recognition, resulting in higher performance. The prediction robustness is increased by 

the ensemble technique, especially when it comes to incorporating complicated atmospheric interactions 

and regional differences in air quality. 

4.1. Performance of CNN Model 

While it performed better in comparison to competing models, the CNN model has raised the 

performance. After 30 training epochs, the network's accuracy (0.9804) demonstrating the model's 

remarkably high capacity for self-generalization. The precision of model (0.9805), indicating that it is a very 

effective positive event identifier. All things considered, f1 score (0.9804) and recall score (0.9804) 

demonstrate its capacity to detect any competent pattern without producing a significant number of false 

negatives. Table 2 displays the CNN model's findings and Figure 3 shows the confusion matrix. 

Table 2. CNN Model Performance 

Epoch Accuracy Precision Recall F1 score 

5 0.9173 0.9163 0.9161 0.9166 

10 0.9359 0.9364 0.9364 0.9368 

15 0.9582 0.9585 0.958 0.9583 

20 0.9704 0.9706 0.9704 0.9704 

25 0.9756 0.9758 0.9755 0.9756 

30 0.9804 0.9805 0.9804 0.9804 

 

Figure 3. Confusion Matrix of CNN Model (Epoch 30). 
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4.2. Performance Evaluation of ANN 

The ANNs performed exceptionally well on the classification tests, with a classification accuracy 

(0.9909) across 30 epochs. As a result, the results are balanced in terms of f1 score (0.9909), recall (0.9909), 

and precision (0.9910). It also confirms that all measurements have predictive significance. As a 

consequence, the ANN model is relevant to the final findings shown in Table 2. These findings highlight 

the importance of trend data and suggest that ANN might enhance generalization abilities. This confusion 

matrix is shown in Figure 3. 

Table 3. ANN model Performance 

Epoch Accuracy Precision Recall F1 score 

5 0.9122 0.912 0.9122 0.9127 

10 0.9357 0.9363 0.9355 0.9359 

15 0.9582 0.9585 0.958 0.9583 

20 0.9724 0.9728 0.9722 0.9725 

25 0.9812 0.9815 0.981 0.9813 

30 0.9909 0.9910 0.9909 0.9909 

 

 
Figure 4. Confusion Matrix of ANN Model (Epoch 30). 

4.3. Performance Evaluation of LSTM 

Long short-term memory performs exceptionally well in categorization tests, with an accuracy grade 

of 0.9661. The f1 score is 0.9661, precision (0.9667), and recall (0.9661) shows the effectiveness of model. 

Table 3 shows the performance of LSTM model with different epoch. The confusion matrix shown in Figure 

4. 

Table 4. LSTM Model Performance 

Epoch Accuracy Precision Recall F1 score(N) 

5 0.9105 0.911 0.9103 0.9106 

10 0.9287 0.9292 0.9285 0.9288 

15 0.9453 0.9458 0.9451 0.9454 

20 0.9556 0.956 0.9555 0.9557 

25 0.9608 0.9613 0.9607 0.9609 

30 0.9661 0.9667 0.9661 0.966 
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Figure 5. Confusion Matrix of LSTM Model (Epoch 30). 

4.4. Performance Evaluation of RNN 

The RNN model performed well with an accuracy of (0.9704) epoch 30. The precision of model 

(0.9706), recall (0.9704), and f1 score (0.9704), demonstrate that a sizable portion of positive predictions are 

made accurately. Table 4 displays the RNN performances. Figure 5 shows the RNN model's confusion 

matrix. 

Table 5. RNN Model Performance 

Epoch Accuracy Precision Recall F1 score 

5 0.9123 0.913 0.9121 0.9126 

10 0.9356 0.9362 0.9354 0.9358 

15 0.9482 0.9485 0.948 0.9483 

20 0.9567 0.9571 0.9565 0.9568 

25 0.9635 0.964 0.9633 0.9636 

30 0.9704 0.9706 0.9704 0.9704 

 

Figure 6. Confusion Matrix of RNN Model (Epoch 30). 

4.5. Performance Evaluation of Proposed Ensemble Model 

The ensemble convolutional neural networks and artificial neural network proposed for the 

classification outperform other test models according to the assessment criterion. It shows higher f1-score 

(0.9986), recall (0.9984), precision (0.9988), and accuracy 0.9985 for 25 epochs. The proposed models' 

performance is displayed in Table 5. The proposed model's confusion matrix is shown in Figure 6. This 

demonstrates how the ANN's sequential learning capabilities aid in the characteristics that the CNN 

collects to create an excellent model. 

Table 6. Ensemble Model Performance 

Epoch Accuracy Precision Recall F1 score 
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5 0.9201 0.9205 0.92 0.9202 

10 0.9403 0.9407 0.9402 0.9404 

15 0.9858 0.9861 0.9857 0.9859 

20 0.9906 0.9909 0.9905 0.9907 

25 0.9985 0.9988 0.9984 0.9986 

30 0.9854 0.9857 0.9854 0.9854 

 

Figure 7. Confusion Matrix of Proposed CNN+ANN Models (Epoch 25). 

4.6. Performance Analysis of All Models 

The advancements achieved in each method were demonstrated by the performance of CNN, ANN, 

RNN, and LSTM across dataset. Each model outperforms the others in every way: CNN concentrates on 

spatial information, LSTM manages vanishing gradients, RNN detects sequence bias, and ANN handles 

basic classification tasks. Tested experiments demonstrate that ensemble model outperforms the individual 

models in classification through improved feature representation and sequence pattern learning. The 

performance evaluation of all models shown in Figure 7. 

 

Figure 8. Performance Analysis of All Models 
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5. Conclusion and Future Work 

In this research, the proposed ensemble deep learning model based on CNN and ANN is proposed 

for air quality forecasting, demonstrating superior performance compared to standalone CNN, ANN, 

RNN, and LSTM architectures. By fusing ANN's ability to describe intricate nonlinear interactions with 

CNN's ability to extract spatial information from environmental data, the suggested ensemble model 

successfully overcomes the drawbacks of conventional models and produces predictions that are 

incredibly precise. The experiments shows that the model performs exceptionally well, surpassing other 

baseline models achieving accuracy (0.9985), precision (0.9988), recall (0.9984), and F1-score (0.9986). The 

ensemble model is more robust than single CNN, ANN, LSTM and RNN models because of its integrated 

approach, which better captures global pollutant patterns and spatiotemporal dependencies. These results 

demonstrate the promise of ensemble deep learning architectures for environmental modeling, especially 

for forecasting air quality with high precision. This research can be improved in future by adding more 

environmental factors and optimizing hyper-parameters for better prediction. 
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