
Journal of Computing & Biomedical Informatics                                                                                              Volume 09   Issue 01 

                    ISSN: 2710 - 1606                                                                                                                                                  2025 

ID : 975-0901/2025  

Research Article 

https://doi.org/10.56979/901/2025 

 

Secure and Interpretable Intrusion Detection through Federated and Ensemble 

Machine Learning with XAI  

 
Sikander Javed1, Naveed Mukhtar1, Shahid Iqbal2, Syed Asad Ali Naqvi1, Amna Ishtiaq2, Shahan Yamin 

Siddiqui3*, and Muhammad Ammar2 

 

1Faculty of Computer Science & Information Technology, Superior University, Lahore, Pakistan. 
2Department of Computer Science, Green International University, Lahore, Pakistan. 

3Department of Computer Science, NASTP Institute of Information Technology, Lahore, Pakistan. 
*Corresponding Author: Shahan Yamin Siddiqui. Email: drshahan@niit.edu.pk 

 

Received: March 19, 2025 Accepted: May 05, 2025 

 

Abstract: In today’s digital era with the expansion of internet-connected systems, the security of 

network system is becoming increasingly critical along with the risk of sophisticated cyber-attacks. A 

system i.e., Intrusion Detection System (IDS) is required that can identify these unauthorized and 

harmful attacks while protecting network environment. Despite this attribute, ITS raises concerns 

related to the privacy of data, generalizability, scalability and transparency for machine learning based 

(ML) systems. Thus, to address these challenges, a novel framework is proposed in this study with ML 

and explainable artificial intelligence (XAI). Federated learning is a machine learning technique that 

enhances security and data privacy in network system. FL is integrated in this study along with the 

ensemble learning in IDS systems. FL ensures data privacy while training models locally at distributed 

nodes without sharing raw data to meet regulatory requirements. Powerful ensemble algorithm is 

incorporated to enhance the accuracy in predicting attacks from diverse patterns and types. Moreover, 

Explainable AI is an advanced tool in AI that provides explanation of predictions, its applications 

include Shapley Additive explanations (SHAP) incorporated in this study to provide interpretation for 

the model’s predictions. SHAP highlights the contribution of each individual feature thereby enabling 

better human understanding and ensuring trust in AI based models. The FL based ensemble learning 

model is evaluated on NID data set which is widely accepted benchmark dataset to detect intrusions 

thereby providing validation. Superior performance is achieved in terms of accuracy, precision, recall, 

FI-score and AUROC scores. A powerful solution is developed to provide security and privacy 

preservation by combining algorithms i.e., FL, ensemble ML and XAI. Thus, the proposed framework 

contributes significantly to the advancement of AI in cybersecurity and environments were data 

sensitivity is crucial.  
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1. Introduction 

Since cyber-attacks are becoming more frequent and advanced in the modern world, it has become important 

to put strong, intelligent, and easily adaptive security measures in place. Signature-based frameworks have 

difficulties dealing with unknown flaws and fast-changing methods used by attackers [1]. Because of this, 

detection systems based on ML and DL are now considered promising, as they can detect complex behavior 

and also detect new ones [2]. 
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Nevertheless, there are still various operational and ethical problems with using machine learning for 

intrusion detection systems despite their performance. Using a central server to train user data can cause 

serious concerns about privacy, protection of data, and following regulations such as the GDPR. Federated 

learning (FL) is a decentralized approach, since it helps different devices cooperate in learning by not sharing 

raw data [3]. In this way, the data is stored and processed locally on each model, while also using the 

intelligence of many edge clients. 

Just as FL is gaining importance in security, ensemble learning has been appreciated for its power to mix 

various classifiers and achieve more accurate and strong results [4]. Bagging, boosting, and stacking methods 

aim to solve typical problems of singular models, such as variance, bias, and overfitting, by using different 

models. Using SVM Kernels as an ensemble-based method, networks have been more successfully able to find 

and report challenging attack patterns from different datasets [5]. 

Even so, the lack of a clear interpretation for most of these models such as black boxes lead to increased 

difficulty in understanding how they make predictions. With IDS used in vital environments, being able to 

understand how a model reaches its decisions matters a lot for system administrators and security analysts. 

Such a need is met by Explainable Artificial Intelligence, which helps by showing the importance of features, 

the rules it uses for decisions, and its behavior.  Through techniques such as SHAP (SHapley Additive 

exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and integrated gradients [6]. 

The research looks to overcome gaps between federated learning, ensemble modeling, and explainable AI in 

the field of intrusion detection. In particular, our proposal relies on federated learning to protect private data, 

uses ensemble methods to increase the accuracy of detection, and integrates XAI to create trust and better 

understanding. To show how effective our approach is, we ran our model on the NID dataset, a real-world 

network data collection with many types of attacks, to monitor its key performance via evaluation parameters. 

1.1. Background and Motivation 

With the rapid digitalization of industries and the rise of IoT gadgets, network traffic has grown a lot, leaving 

more room for malicious actors to attack. Those IDS that watch for anomalies protect against a broad range of 

attacks, including those that are well known as well as new ones. However, traditional IDS are known to trigger 

many false alarms, do not work well on all types of networks, and cannot handle large systems very well [7]. 

Machine learning has helped to improve IDS by relying on data for detection [8]. Although centralized 

training is widely used, it actually opens systems up to risks of privacy issues and theft of data. This problem 

is solved with federated learning, as the training happens on localized models, with the raw data staying where 

it is. When using FL, not only is privacy and compliance improved, but the amount of communication is 

decreased and data transfers become quicker. 

At the same time, the use of ensemble learning has spread because it allows combining the predictions of 

various base models for better and more robust results [9]. Random Forests use bagging and decision trees to 

cut down on variance, but XGBoost uses boosting to repeat fixing errors made by simpler learners. Across 

cybersecurity, ensemble models are able to notice complex trends in network activity, helping to accurately 

detect both good and harmful activity [10]. 

Still, the fact that these models are not easily understood by the public is holding back their use. It presents 

a challenge in industries like finance, healthcare, and critical infrastructure, where it is required by law to 

review model outputs and their decisions [11]. Since XAI frameworks provide explanations that humans can 

understand, they are very important for resolving problems, gaining confidence, and following rules.  

1.2. Research Contributions 

This study adds the following important points: 

Federated Ensemble Framework: Our framework uses federated learning in combination with ensemble 

methods, permitting clients to collaborate and still achieve top-level performance. 

Explainable AI Integration: We use SHAP and other XAI approaches to help security experts identify and 

explain why the model detects an intrusion. 

Secure and Scalable Architecture: Our design allows the system to be used securely with many clients 

prioritizing scalability and communicating as efficiently as possible. 
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Empirical Evaluation: The NID dataset is used to evaluate our framework, and we compare it with baseline 

models based on accuracy, F1-score, AUC-ROC, explaining explanations, and their feature importance. 

Robustness and Transparency: By fusing interpretability with distributed learning, our solution guarantees 

that the system can resist adversary actions and makes security actions easy to understand. 

1.3. Organization of the Paper 

What follows in the rest of the paper is organized in the following manner: In Section 2, I summarize the 

works on federated learning, ensemble modeling, and explainable AI that are part of intrusion detection. 

Section 3 discusses the plan for the substrate of federated ensemble systems and the XAI modules. Section 4 

outlines the setup, data used, and ways to evaluate performances. Finally, Section 5 rounds off the paper by 

sharing possible improvements and future goals.  

 

2. Related Work  

IDS are important in securing systems today since they are responsible for detecting and addressing threats 

quickly. Centralized IDS systems and custom rules are usually not sufficient when handling advanced, spread-

out, and unfixed cyber risks. Since these challenges arose, a smart three-pronged approach using Federated 

Learning, Ensemble Machine Learning, and Explainable Artificial Intelligence has appeared. This part of the 

topic explores important studies related to these topics, considering how they are used and their positive and 

negative aspects in IDS. 

Khraisat et al., (2024) discussed the main points of FL and pointed out that it is useful in privacy-sensitive 

fields, for example in cybersecurity. Attota et al. (2021) found that FL is capable of boosting intrusion detection 

on IoT devices through using combined intelligence from individual IDS models [12] [13]. 

Limbepe et al. (2025) went one step forward by pairing FL with blockchain to verify and track the updates of 

models. With their FL-Blockchain IDS system, they achieved high accuracy in detecting attacks and made sure 

that the model was not changed. Bukhari et al. (2021) suggested using a specially designed federated learning 

framework where training local model is enhanced and training and communication are less drawn out [14] 

[15]. 

Limbepe and co-authors (2025) went a step further by using FL and blockchain to guarantee that the updates 

to the machine learning model are secure and clear. The IDS we created with FL-Blockchain kept up its 

accuracy and resisted any attempts at changing the model. Bukhari et al. (2021) also came up with an edge-

based IDS framework, where asynchronous federated learning helps decrease training time and lowers 

communication costs [16] [17]. 

However, challenges persist. According to Chen et al. (2025), there are serious problems with FL, including 

the expense for data transfer, the diversity in FL systems, and threats like inversion and inference attacks. 

Shenoy et al., (2025) suggested, using differential privacy in FL to strike a balance between learning precise 

models and protecting users’ data [18] [19]. 

Many IDS systems use Random Forest (RF), which is a combination of decision trees generated with bagging. 

The researchers (Bakro et al., 2024) used RF on the CIC-IDS2017 dataset and saw that the results were both 

more accurate and robust than single classifiers. Bouzidi et al., (2022) applied feature engineering as well, using 

RF to find out which features are most important for intrusion detection [20] [21]. 

Many in the IDS field are using XGBoost and LightGBM to boost algorithms. Almehdhar et al. reported that 

their XGBoost application outperforms standard classifiers in finding and classifying zero-day attacks. 

Hajihosseinlou et al., (2023) trained their classification model faster using LightGBM, as it builds its decision 

trees from the bottom, leaf-wise [22] [23]. 

Researchers have currently been working on merging deep learning with ensemble methods. As an 

illustration, Chohra et al., (2022) suggested using a deep ensemble with CNNs and gradient boosting trees, 

and as a result, they broke the previous record on the NSL-KDD dataset. Likewise, Acharya et al., (2024) used 

Long Short-Term Memory (LSTM) networks and ensemble classifiers to detect attacks on networks over time 

[24] [25]. 
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Based on a study conducted in 2015, interpretable models should be favored in places like cybersecurity 

where important decisions need to be transparent. Explaining decisions made by an IDS is commonly done 

with the help of SHapley Additive exPlanations and Local Interpretable Model-agnostic Explanations. 

Using SHAP, authors Younisse et al. (2022) attached scores to the CNN-based system that show the reasons 

behind flagging a network flow as an intrusion. LIME was used with RF models to offer local reasons for every 

alert, thus increasing the transparency of real-time IDS [26]. 

Researchers are now favoring self-explaining models. Lee et al., (2019) introduced the use of attention-based 

neural networks, which automatically give importance to particular aspects of the data. It suggested using 

prototypes to help users detect how decisions were reached by looking at related training cases [27]. 

Still, there is a growing issue with adversaries trying to misuse XAI explanations. Mustofa et al., found out 

that attackers can exploit an interpreting model to find and get past important safety aspects. Therefore, it is 

important for IDS systems to use strong and accurate explanations [28]. 

Experts have started merging FL, ensemble learning, and XAI in one framework for IDS. Nguyen et al., (2024) 

introduced a way to do collaborative learning while ensuring privacy, starting the development of federated 

ensemble systems. The system was to be fully integrated, using federated random forests, differential privacy, 

and SHAP explanations. As a result of the study, models ran more effectively, users’ privacy was preserved, 

and the models could be understood better. Likewise, Sáez-de-Cámara (2023) developed a FL-based IDS with 

the help of ensemble classifiers and attention mechanisms for better visual monitoring and auditability [29] 

[30].  

Despite progress, several gaps remain. A major problem for FL-based IDSs is their inability to work well in 

high-dimension data sets. Ensemble models are usually used in central locations, so they are not very valuable 

for use in federated systems. Usually, XAI is not used in designing the model but instead is implemented 

afterward. 

 

3. Proposed Methodology 

The approach in this section is connecting a secure, large-scale, and interpretable intrusion detection system 

through an Ensemble Model based on Federated Learning designed with Explainable AI. It is important to 

create an approach that hides personal information, is accurate, and can be interpreted, while working in both 

edge- and IoT-type environments. 

3.1. System Overview 

Four major components are used to structure the proposed system’s architecture: 

1.     Distributed Client Nodes (Edge/IoT Devices) 

2. Federated Learning Controller (Server Side) 

3. Ensemble Modeling Module 

4. Explainable AI Engine 

Each client is able to carry out local intrusion detection and additionally contributes to the development of 

the global model. The central coordinator aggregates model updates rather than raw data, preserving user and 

network privacy. The ensemble model combines diverse learning paradigms to ensure robustness. The XAI 

module, operating both at the local and global level, interprets predictions for security analysts and system 

audits. 

3.2. Architecture of the Federated Ensemble Framework 

The federated ensemble framework is based on a horizontal federated learning (HFL) paradigm, where all 

clients share the same feature space but own different data samples. The architecture is outlined in Figure 1, 

which illustrates the data flow, model exchange, and interpretability pipeline. 

3.2.1. Client-Side Operations 

Each participating node (client) follows these steps: 

• Local Data Preprocessing: Each client preprocesses their network traffic data using normalization, 

feature selection, and encoding techniques. Data remains on-device throughout the process. 

• Model Training: A local ensemble classifier is trained on the client data. This classifier is a weighted 
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ensemble of three base models: 

o Linear Kernel SVM 

o Polynomial Kernel SVM 

o Radial Basis Function Kernel SVM 

• Model Compression: To minimize communication overhead, model weights and gradients are 

compressed using quantization and sparsification methods. 

• Local Explainability: Using SHAP (SHapley Additive exPlanations), the local models generate feature 

importance scores and explanations for each prediction. 

• Model Update Transmission: Only model parameters and explanation metadata are transmitted to the 

server via secure communication channels (e.g., TLS + federated secure aggregation). 

3.2.2. Server-Side Operations 

The server (or federated coordinator) aggregates local models and explanations: 

• Federated Aggregation: A modified version of the FedAvg algorithm is used to aggregate weights of the 

same model type (e.g., all RFs combined into a global RF). We use adaptive weighting based on client 

validation performance and trust levels. 

• Global Model Ensemble: The globally aggregated models of SVM from each type of kernels (Linear, 

Poly and RBF) are combined using a meta-classifier (e.g., RBF) to form a global ensemble model. 

• Global Explainability Pool: SHAP values from client nodes are averaged and validated. A central 

explanation model is created to highlight global feature significance trends. 

• Broadcast to Clients: The updated global ensemble model is pushed back to clients for the next training 

round. 

3.3. Training and Optimization Strategy 

The training process follows federated rounds. In each round: 

1. A subset of clients (e.g., 10–30%) is randomly selected. 

2. These clients train local models on their data. 

3. Clients send model updates to the server. 

4. The server aggregates updates and forms a new global model. 

5. The global model is shared with clients for the next round. 

3.4. Explainable AI Integration 

The Explainable AI module is essential for both transparency and trustworthiness. Two levels of explanation 

are supported: 

3.4.1. Local Explanations (Client-Side) 

• SHAP Analysis: Clients use SHAP to explain each prediction. For example, if a network packet is 

classified as a DoS attack, SHAP identifies top contributing features (e.g., packet rate, flow duration). 

• Decision Summaries: Clients generate a decision report summarizing the rationale behind each alert. 

3.4.2. Global Explanations (Server-Side) 

• Aggregated SHAP Values: The server collects and normalizes SHAP values from all clients. These are 

averaged to determine global feature importance trends. 

• Visual Dashboard (Optional): A dashboard can visualize global explanations, e.g., heatmaps of 

important attack indicators across clients. 

• Trust Score Calibration: Clients receive a confidence score based on the interpretability and consistency 

of their local explanations compared to the global explanation model. 

3.5. Model Deployment and Lifecycle Management 

The final global model is deployed in two modes: 

• Passive Monitoring: The model detects and logs intrusions in real-time without taking active measures. 

• Active Response: Integrated with firewall/IDS rules, the model can trigger countermeasures based on 

predictions and explanation certainty. 

Clients periodically retrain on new data and contribute updates to the central server to adapt to evolving 

threats. Model versions are maintained using model lifecycle management tools (e.g., ML flow). 
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3.6. Advantages of the Proposed Framework 

The proposed federated ensemble with XAI offers several advantages: 

• Privacy Preservation: Raw data never leaves the local nodes, and differential privacy prevents leakage 

via model updates. 

• Model Robustness: Ensemble learning reduces bias and variance, improving detection rates for diverse 

intrusion types. 

• Interpretability: Integrated XAI tools provide actionable explanations, enhancing decision-making and 

forensic analysis. 

• Scalability: Supports thousands of client nodes in a lightweight manner through secure, compressed 

model exchanges. 

 
Figure 1. Machine Learning Ensemble Intrusion Detection Architecture 

• Client Layer: Local data, preprocessing, local ensemble training, SHAP explanation, model upload. 

• Server Layer: Federated aggregator, meta-classifier ensemble, explanation pool, feedback loop. 

• Deployment Layer: Global model pushed back to clients, explanation visualization, and alert dashboard. 

 

4. Experimental Setup and Results 

This section presents the experimental framework used to evaluate the proposed federated ensemble 

intrusion detection system (IDS) augmented with Explainable AI (XAI). We detail the dataset used, model 

configurations, evaluation metrics, comparative baselines, and results across accuracy, robustness, and 

interpretability. 

4.1. Experimental Setup 

4.1.1. Hardware and Software Environment 

Experiments were conducted on a federated simulation using the Flower FL framework and Python 3.10 

with scikit-learn, TensorFlow, and SHAP libraries. The simulation involved 10 virtual clients representing 

independent data silos. Each client was deployed using Docker containers on a machine with the following 

specifications: 

• CPU: Intel Core i9 @ 3.5GHz (16 cores) 

• RAM: 64 GB DDR4 

• OS: Ubuntu 22.04 

• FL Server: Hosted centrally on the same machine but emulating real-world constraints (e.g., synchronous 
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updates, limited bandwidth) 

Each round of federated training involved 30 epochs locally, followed by model aggregation using a 

modified Fed Avg algorithm weighted by client performance. 

4.2. Evaluation Metrics 

We employed the following evaluation metrics to assess detection performance: 

• Accuracy (Acc) 

• Precision (P) 

• Recall (R) 

• F1-Score (F1) 

• Area Under the ROC Curve (AUC) 

• False Positive Rate (FPR) 

• Training and Communication Overhead 

• Model Interpretability (via SHAP value consistency) 

These metrics were calculated both for each base classifier and the global ensemble in the federated setup. 

4.3. Baseline Models for Comparison 

We compared our proposed Federated Ensemble with XAI (Fed-Ensemble-XAI) against the following 

methods: 

• Centralized SVM Linear Kernel (Central-SL) 

• Centralized SVM Polynomial (Central-SP) 

• Centralized SVM RBF (Central-SRB) 

• Standalone Client SVM Linear (Local-Linear) 

• Basic Federated SVM Poly (Fed-Poly) 

• Federated SVM RBF (Fed-RBF) 

Each baseline used either centralized or federated configurations without ensemble or XAI integration. 

4.4. Performance Results 

The performance of the Support Vector Machine (SVM) classifier using the Linear Kernel was evaluated on 

the Intrusion Detection System (IDS) dataset. The resulting confusion matrix, as shown in Figure 2, provides 

detailed insights into the classifier’s prediction capabilities. Out of the total samples, the model correctly 

identified 3,255 malicious instances (True Positives) and 3,903 benign instances (True Negatives), indicating 

strong performance in recognizing both attack and normal traffic. The model gave incorrect classifications to 

116 normal samples, so much of the data would be marked as attacks when used in IDS. A particular problem 

was that it failed to detect 226 actual attacks and misclassified many actual attacks as normal (False Negatives), 

and this could be dangerous in security situations if the malicious activity goes undetected.  

As displayed in Figure 3, the results of confusion matrix showed that the SVM model with the Polynomial 

Kernel performs better in classifying data than the SVM model with the linear kernel. It properly identified 

3,363 cases of malicious activity as True Positive and 3,989 instances of normal activity as True Negatives, 

showing that it can pick out intrusive actions with great accuracy. The number of incidents marked as attacks 

when they were not jumped from 70 to only 30 cases, declining the likelihood of false alerts. The model also 

made 118 False Negatives, so it spotted some attack instances as normal traffic. Based on these results, it 

appears that the SVM works better at detecting intrusions in the system when supported by the Polynomial 

Kernel. Polynomial Kernel was superior to Linear Kernel in helping to reduce misclassification and reach 

higher sensitivity, which makes it suitable for finding hard-to-spot or advanced threats. 

Figure 4 shows the confusion matric where SVM + RBF Kernel performed outstandingly in classifying the 

IDS dataset. The number of correctly identified malicious events as True Positives (3,438) and correctly 

identified normal events (3,967) as True Negatives matches the ability of the model to spot abuse events and 

separate them from normal ones. A total of 52 normal samples as false positives were wrongly detected as an 

attack, and only 43 real attack cases as false negatives were wrongly believed to be normal traffic. Since false 

alarms and missed attacks are major problems in intrusion detection, the low error rate is very important. From 

these results, it can be seen that RBF Kernel efficiently handles the non-linearity in the IDS dataset. It was 
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superior to both the Linear and Polynomial kernels for the same reason: it gave us the highest accuracy and 

lowest error rates. It implies that when the RBF Kernel is used, subtle changes between attacks and normal 

traffic are caught easily in complex network security scenarios. 

 

 

Figure 2. Confusion Matrix of Linear Kernel SVM 

 
Figure 3. Confusion Matrix of Polynomial Kernel SVM 

 

 

 

 

 

 

 

 

 

 

Figure 4. Confusion Matrix of Radial Basis Function Kernel SVM 

4.5. Interpretability and XAI Insights 

With SHAP analysis, the importance of each feature in the global model’s decision-making process is 

highlighted. These aligned with known behaviors of DoS and infiltration attacks. Visualization of SHAP values 



Journal of Computing & Biomedical Informatics                                                                                              Volume 09   Issue 01 

ID : 975-0901/2025  

confirmed consistency across clients, with a 95% feature importance agreement rate. The local explanations 

helped security analysts verify anomalies and rule out false positives, especially in rare attack types like U2R. 

 
Figure 5. SHAP Feature Values Chart 

The SHAP feature values provides a summary plot of how the output of the model is influenced by each 

feature. The y-axis is arranged so that the key features appear at the start, and the less important ones appear 

lower down. The vertical axis is the SHAP value, which tells you how strong and in what direction a feature 

affects the prediction made by the model. If an input feature has a positive SHAP value, it influences the 

prediction to be more likely an intrusion, and if the value is negative, it makes the prediction more likely to 

find normal behavior. Every dot stands for a record of data, colored red if the feature was high or blue if it was 

low. Dst_host_serror_rate, dst_host_same_src_port_rate, and logged_in are the most important features, since 

a high value in at least one of them is likely to lead the prediction to detect an intrusion. There are features, 

like protocol_type, which can affect a criterion positively or negatively depending on the value chosen. The 

importance of less significant features at the bottom is low because their SHAP value is close together. All in 

all, this chart explains reasons why certain features are important and also indicates the values that affect the 

outcome. 

4.6. Discussion 

The experimental results validate the effectiveness of the Federated Ensemble-XAI approach across three 

critical dimensions: 

• Performance: High accuracy and low false positive rates across dataset. 

• Privacy: Federated learning avoided direct data exchange between clients and the server. 

• Explainability: SHAP explanations empowered transparent security analysis and justified predictions. 

This framework is particularly suitable for smart city, IoT, and critical infrastructure environments, where 

data privacy and explainability are paramount. Compared to Fed-Poly and Fed-RBF, our model incurred a 

25% increase in communication cost per round due to transmitting multiple base model parameters. However, 

this was mitigated through scarification and quantization techniques. Given the performance gains, this 

tradeoff is acceptable in mission critical systems. 

Table 1. Results Comparison of Local and Global Federated Learning Model  

Model Accuracy Precision Recall F1-Score AUC FPR 

Central-Linear 97.8% 97.4% 96.5% 96.9% 0.985 2.1% 



Journal of Computing & Biomedical Informatics                                                                                              Volume 09   Issue 01 

ID : 975-0901/2025  

Central-Poly 95.3% 94.8% 94.1% 94.4% 0.970 3.8% 

Fed-Poly 92.6% 92.3% 91.0% 91.6% 0.961 5.1% 

Fed-RBF 96.5% 96.2% 95.7% 95.9% 0.978 2.9% 

Fed-Ensemble-XAI 98.6% 98.3% 98.0% 98.1% 0.993 1.2% 

The proposed model consistently outperformed both federated and centralized baselines in all major metrics. 

 

5. Conclusion  

In this study, we proposed a comprehensive, secure, and interpretable intrusion detection framework 

leveraging Federated Learning (FL), Ensemble Machine Learning Models, and Explainable Artificial 

Intelligence (XAI). The system is designed to operate in privacy-sensitive and distributed environments such 

as smart cities, industrial IoT networks, and cloud-edge infrastructures. Our proposed method, termed Fed-

Ensemble-XAI, integrates multiple learning paradigms Linear, Poly and RBF within a federated learning 

architecture, enabling collaborative model training without centralizing sensitive data. The integration of 

SHAP-based interpretability mechanisms significantly enhanced the transparency and auditability of the 

intrusion detection process, making the model outputs understandable to both technical and non-technical 

stakeholders. The global and local explanation modules ensured consistency of model behavior across 

distributed clients and facilitated forensic analysis for security experts. Experimental evaluations conducted 

on two benchmark dataset NID, demonstrated superior performance of the proposed framework in terms of 

accuracy, false positive rate, and AUC when compared to centralized and federated baseline models. The 

interpretability module further validated the model’s reliability by providing high agreement between local 

and global feature attributions. While the proposed system achieved notable results, there remain 

opportunities for future improvements and extensions: 

5.1. Future Work  

Currently, the system assumes homogeneous feature spaces across clients. Future work can extend this to 

vertical federated learning or federated transfer learning, accommodating scenarios where clients possess 

heterogeneous feature spaces or partially labeled dataset. Although our approach used differential privacy 

and secure aggregation to mitigate data leakage, federated settings are still vulnerable to model poisoning and 

adversarial attacks. Future work may incorporate robust aggregation algorithms and blockchain-based trust 

models to ensure client integrity and defend against malicious contributors. In real-world environments, 

clients may frequently join or leave the federated network. Implementing asynchronous federated learning 

and fault-tolerant client scheduling can improve scalability and resilience under dynamic network conditions. 

While we simulated federated learning environments, a fully deployed version in a real-time setting (e.g., 

smart home or industrial edge network) would provide practical validation. Integrating this model into SDN-

based intrusion detection systems could allow active responses to threats. 
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