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Abstract: Industrial Cyber-Physical Systems (ICPS) represent the backbone of applications, such as 

manufacturing, energy, and healthcare, but they are also under the threat of advanced cyberattacks, 

e.g., zero-day and data leak ones. The shortcomings of centralized IDS on the aspects of data 

security, privacy preserving and efficiency have been discovered. To address this challenge, we 

propose Cyber Sentry, a federated deep learning (DL) framework which enhances the security of 

ICPS by allowing decentralized, collaborative model training with no access to sensitive data. Data-

centeredness: Here, the RT-IoT2022 dataset is vertically sliced, and dynamic pre-processing is 

achieved to train deep NNs, such as CNNs and LSTMs, in a local training fashion at edge devices. 

Based on those models, a strong global model for an anomalous situation is aggregated for 

detection. The framework is validated experimentally by achieving 92.5% detection accuracy with 

negligible false positive, while preserving the privacy of data through encryption mechanism. It has 

also been analyzed for enhancing the security at the edge layer by leaning on edge computing and 

blockchain security systems to achieve improved scalability and defense capabilities against cyber-

attacks. It also shows advantages in terms of reduced communication cost and increased operation 

availability. We offer future research directions from an academic perspective and some 

implications for the industry on the adoption of federated learning to cybersecurity for ICPS. Some 

future work is to enhance the adversarial attack resistance, to integrate federated learning in 

blockchain networks, and to explore how to implement explainable AI to make the model more 

explainable. The quality of the experimental result offered by the proposed method demonstrates 

the need for federated deep learning to protect the industrial infrastructures in a connected world. 

 

Keywords: Industrial Cyber-Physical Systems (ICPS); Federated Deep Learning; Anomaly 
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1. Introduction 

Industrial cyber-physical systems (CPS) are typically described as wide-scale, geographically-

dispersed, complex and heterogeneous IoT in an industrial domain such as smart grids, autonomous 

transportation systems and gas pipelining systems → next. Industrial CPSs are characterized by 

embedding of smart communication and computing technologies like 5G (and beyond), Software Defined 

Networking (SDN), network function virtualization, cloud computing, and AI on top of the traditional 

Industrial Control Systems (ICS), a general architecture of which is shown in Fig. 1. Industrial CPSs are 

foreseen to offer remote accessibility, driven smart services, big data analytical features and enhanced 

network resource provisioning [1]. Within different essential industrial sectors, a new trend of hybrid 

systems generated by the tremendous proliferation of connected devices have evolved to become 

Industrial Cyber-Physical Systems (ICPS), where computation, networking and physical processes are 

deeply intertwined. ICPS have penetrated as the cornerstone of the fourth industrial revolution, from smart 
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manufacturing plants and intelligent power grids to automated water treatment facilities and intelligent 

transportation networks. Although this convergence is enabling automation, real-time data processing, 

and optimization of resources between buyer, consumer, vendor, and carrier, it is also greatly increasing 

the cyber-attack surface [2-3]. As a direct result, ICPS are now increasingly vulnerable to advanced cyber-

attacks capable of disrupting physical systems, threatening national security, and causing economic and 

environmental disasters. 

 
Figure 1. A general architecture of industrial CPSs. 

The traditional cybersecurity mechanisms that were implemented for conventional IT infrastructures 

cannot be reused in ICPS, because of the real time constraints, highly distributed architectures and safety 

critical operations of ICPS. More specifically, existing centralized intrusion detection systems (IDS) and 

security solutions suffer from high-latency, data privacy issues, and a lack of scalability [4]. In addition, 

conventional deep learning-based intrusion detection models cannot be directly deployed in ICPS because 

they would incur high data transfer costs and likely expose sensitive operational data. In order to alleviate 

these challenges, recent development of Federated Learning (FL) — a decentralized machine learning 

paradigm that trains a model based on data from a multitude of devices or nodes without the need to share 

any raw data — have great promise[5]. It is intuitive to be that Federated Learning ameliorates data privacy 

while conserving the network bandwidth, which makes it a promising solution to augment security in the 

ICPS with resource constraints and sensitive latency. Combined with deep learning architectures, FL 

provides the complementary elements of reliable anomaly detection and a guarantee that sensitive 

industrial data need never leave the local domain [6]. In this research paper, we present a federated deep 

learning-based framework called “Cyber-Sentry” with the underlying goal of fortifying the security 

posture of ICPS. Cyber Sentry aims to provide detect-and-respond capabilities in early stages of threat 

detection with distributed ICPS networks through collaborative learning approaches while protecting their 

data privacy. Our approach uses the deep neural nets as the underlying base to identify intelligent and 

costly cyber intrusions while being in alignment with the industrial constraints [7]. 

Apart from exploiting federated deep learning, feature selection and data preprocessing are also 

highlighted as important elements of the novel security framework suggested through this work. Since 

industrial data are typically characterized by a high dimensional feature space [8], it is important to filter 

out the features to improve detection performance and reduce computation resources. Using methods like 

PCA, RFE, information gain, etc., changes are made to the input space to boost model performance. 

Additionally, we use strong preprocessing methods like normalization, missing value handling, and class 

imbalance handling — which are necessary for training trustable and generalizable models. This research 

adopts the following methodological framework: (1) a literature review of the state-of-the-art on both ICPS 

security and federated learning approaches; (2) a threat analysis identifying several attack vectors 

applicable to industrial networks; (3) development of federated intrusion detection models using 

convolutional neural networks (CNNs); (4) deployment of federated intrusion prevention mechanisms; (5) 

evaluation of the system based on performance metrics comprising accuracy, precision, recall, F1-score, 

and AUC, and (6) comparative analysis with centralized and traditional IDS models. Our experiments 

show that Cyber Sentry obtains high detection accuracy while effectively minimizing communication 

overhead and respecting data privacy, allowing further progress towards real-world ICPS security 

applications. 



Journal of Computing & Biomedical Informatics                                           Volume 09  Issue 01                                                                                         

ID : 974-0901/2025  

A unique part of Cyber Sentry is that it can work within an industrial network with different nodes 

from different manufacturers [9]. Cyber Sentry understands the industrial landscape — not only from the 

point of view of diversity of components going from sensors, actuators, PLCs to edge servers, unlike 

traditional solutions based on the assumption that data will be in the same hand be processed in the same 

data relevance. This allows complete integration of the system with existing industrial infrastructures, 

without the need for major architectural modifications [10]. A further key aspect of this research are the 

adaptive learning capabilities that enable the federated model to adapt to new threats. Detecting attacks 

is a reactive process, and as attackers evolve with new TTPs, so too must cybersecurity solutions [11]. This 

serves the purpose of Cyber Sentry that involves continuous learning strategies on the model updates the 

global model based on new data distributions and keeping the model updated to provide more robustness 

against zero-day attacks and unseen cyber anomalies. More broadly, this work connects the recent 

theoretical developments in federated learning with application into real-world security of critical 

infrastructure. The Cyber Sentry framework shows how the capabilities of federated deep learning can be 

applied to a complex real-world, high-consequence domain like intentionally compromised physical 

systems (ICPS) — resulting innovations prepare us for the next generation of distributed AI-driven 

cybersecurity [12]. Moreover, it adds to the increasing variety of literature on privacy-preserving machine 

learning for sensitive applications where sharing is legally prohibited or operationally infeasible. 

The contributions of this research are: 

• A federated deep learning framework for ICPS security: design and implementation 

• Realistic Dataset Evaluation (RT-IoT2022): ensuring applicability in real industrial scenarios. 

• More advanced techniques for preprocessing and/or feature selection. 

• Scalability and adaptability for heterogeneous and resource-constrained industrial environments. 

• Performance comparison and benefits analysis showing how our model performs better than 

centralized models. 

While defense in depth using generations of well-established security paradigms have and will 

continue to play their role against the threat spectrum, the cyber crisis against national infrastructure and 

energy cities galvanizes one to innovate beyond. Cyber Sentry capitalizes on the power of federated deep 

learning to enhance the cyber resilience of ICPS while paving the way for privacy-preserving, intelligent 

and scalable cybersecurity solutions in the digitalized industry [13]. 

 

2. Related Work  

Here in this section, we summarize the existing studies on industrial CPS-focused intrusion detection 

schemes, and investigate federated learning based intrusion detection methods. 

Industrial CPS Intrusion Detection Schemes 

Industrial Cyber-Physical Systems (ICPSs) are world models in which computation, networking and 

physical processes are deeply integrated. The security of cyber-physical systems has become a major area 

of research, given their growing adoption in various sectors including energy, manufacturing, and 

transportation [14]. Sharmila et al. [15] proposes a Quantized Autoencoders (QAE) based IDS for 

lightweight anomaly detection on resource-constrained IoT nodes. Using of the RT–IoT2022 dataset, their 

model performed superiorly in terms of detection accuracy and resource usage, making it suitable for real–

time applications in ICPS environments. 

Earlier, Yang et al. [16]. Proposed an innovative zone-partition-based method for identifying both 

previously recognized and novel cyber-attacks in industrial cyber physical systems (CPSs). They also built 

their method in such a way that multiple zones can be compromised at the same time, since it is a common 

attack vector for large industrial infrastructures.  

In 2019, Qiu et al. [17] proposed the use of a dueling deep Q-learning approach to secure software-

defined industrial IoT communications. Their approach adaptively reinforced policies across different 

threat levels using deep reinforcement learning.  

Yang et al. [18] based CNN-based intrusion detection system for SCADA networks, effectively 

detecting traditional network and protocol-specific cyberattacks on industrial control systems. 

  Liu et al. [19] proposed a hierarchical dissemination of IDS oriented architecture framework for 

large-scale ICPSs. Their system coupled data from the physical and information layers for multi-level 

threat detection and monitoring.  
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Ismail et al. [20], also made notable contribution in this category by proposing a deep learning-based 

IDS oriented for electricity theft detection in smart grids. In contrast to their work, our method was based 

on real consumption data to differentiate between normal and malicious behavior, highlighting the need 

for domain-specific datasets in ICPS security.  

These works summarize the way towards DL-based models with high detection rate, adaptability, 

and automation. Nevertheless, a large number of them still consider the centralized data training approach 

where privacy,  scalability, and robustness issues arise and they were tackled by the federated learning 

paradigms.  

Methods of intrusion detection based on federated learning 

Federated Learning (FL) is a machine learning approach that enables multiple clients to jointly train 

a global model without sharing raw data. The adoption of blockchain in ICPS security is gaining much 

momentum, as it directly addresses the critical constraints of data privacy, distributed architecture, and 

real-time learning  [21]. Preuveneers et al. [22], the authors proposed a blockchained integrated FL 

architecture where clients train their models locally, and then updates are audited through smart contracts, 

in 2018. Such a coupling guarantees transparency, immutability, and accountability to intrusion detection 

pipelines. 

In 2019, Nguyen et al. proposed an automated/federated learning-based system to identify 

compromised IoT devices. By fine-tuning model updates according to feedback from threat and device 

behavior, their framework allows for rapid and efficient threat detection in non-centralized settings. Zhao 

et al [23]. To address such challenges proposed Multi-task Deep Neural Networks for FL (MT-DNN-FL) to 

jointly handle multiple types of detection tasks on heterogeneous devices. Given the demands of 

bandwidth-constrained communication in CPS networks, their model balances local task accuracy and 

communication efficiency,  

Chen et al. [24] proposed the Federated Deep Autoencoding Gaussian Mixture Model (FDAGMM) to 

achieve better performance in sparse and imbalanced datasets commonly occurring in CPS environments. 

Their approach beat centralized notice boards especially at the retained local anomalies during training. 

Recent works have augmented various tags of FL with differential privacy, (differential) secure 

aggregation and adaptive client participation, which provide FL with a reliable basis to evolve into a new 

scalable privacy-preserving IDS solution for ICPSs. 

The authors of this work considered several machine learning techniques such as logistic regression, 

decision tree, random forest, gradient boost, K-nearest neighbor, support vector machine, and NBayes 

algorithm. The outcomes showed that the Random Forests and NaivBayes classifiers performed superior 

compared to the other algorithms with a precision of 80%. 

 
Figure 2. Federated CNN-LSTM Hybrid Model Training Flowchart 
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3. Materials and Methods 

3.1. Preprocessing  

If you are doing any machine learning, you will have to have a preprocessing step before taking any 

model, this step will take your raw data to set a format that is ready to feed into the model. Noise, missing 

values, non-standard formats, and high dimensionality are to be expected while processing real-world 

datasets—for instance, those with ICPS network traffic. In this study, the RT-IoT2022 dataset was utilized, 

which consists of 123,117 instances and 83 features including traffic metadata, protocol types, packet 

timings, and system flags. I created a dataset showing both normal and malicious behavior in a simulative 

real-time industrial system. Before the data can be used for training, preprocessing steps were performed. 

Initially, data cleansing was done to discard duplicate data and median imputation was utilized for 

imputing missing values. Data transformation: Following this, data transformation was applied — min-

max normalization to scale numerical attributes, namely flow duration and packet size, into a [0,1] range 

to avoid any bias when training the model [25]. We used one-hot encoding for categorical features like 

protocol and flags to convert them into numerical representation. Such features are both irrelevant as well 

as redundant, thus statistical feature selection techniques like Recursive Feature Elimination (RFE) and 

Principal Component Analysis (PCA) were available to perform dimensionality reduction by removing 

such attributes. These transformations guaranteed that only the most important aspects supplied 

information to the learning process. Lastly, a final dataset was created by randomly splitting the previous 

data into train (80%) and test (20%) sets for an unbiased measure of model performance [26]. 

3.2. Deep Learning Models 

In light of the fact that Industrial Cyber-Physical Systems are dynamic in nature and distributed in 

the physical world, deep learning models were utilized to learn complex patterns from high-dimensional 

data [27-28]. This research developed and evaluated three models: Convolutional Neural Network (CNN), 

Long Short-Term Memory (LSTM), and a hybrid Federated CNN-LSTM. The network connections were 

categorized as normal or malicious depending on the input features and the model was then trained to 

classify them accordingly [29]. 

3.2.1. Federated CNN-LSTM Hybrid Model 

And a federated hybrid model consisting CNN and LSTM to ensure both privacy-sensitive data 

privacy and data locality. In this method, all the client devices trained their own local CNN-LSTM model 

on local traffic data. The raw data remained on the devices and after every training round, only the model 

(not the raw) parameters were sent to a central server for aggregation via Federated Averaging (FedAvg) 

[30]. They sent the aggregated model back to all clients. 

Algorithm 1: Federated CNN-LSTM Hybrid Learning 

Require: Federated client datasets D = {D1, D2, ..., Dn}, number of rounds = R 

Ensure: Federated global anomaly detection model 

1: Initialize global model M with CNN-LSTM architecture 

2: for each round r = 1 to R do 

3:     for each client i in 1 to n do 

4:         Receive global model M 

5:         Train local model M_i on local dataset D_i 

6:         Send updated local model weights W_i to server 

7:     end for 

8:     Aggregate all local weights {W_1, W_2, ..., W_n} using Federated Averaging 

9:     Update global model M with aggregated weights 

10: end for 

11: Final global model M ready for deployment 

The strong generalization performance was achieved in a decentralized setting that maintains data 

privacy. At a testing accuracy level of 93.8%, precision 0.92 and ROC-AUC 0.96, the federated model 

outperformed both the standalone CNN and standalone LSTM models as well. 

3.2.2. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a special kind of recurrent neural network (RNN) architecture 

that can learn temporal data or data with long-range dependencies. ICPS traffic sequences were therefore 
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the training input for the LSTM in this study, which captures time-dependent behaviors that can be used 

to identify attacks that grow slowly or evolve 51 The architecture consisted of an input layer, a portal 

protein, a lone star multiple star, dropout regularization, and dense output layers. 

Algorithm 2: LSTM-Based Anomaly Detection 

Require: Preprocessed sequential dataset D = (X, y), number of classes = C 

Ensure: Trained LSTM model for anomaly detection 

1: Initialize LSTM model with: 

2:      - LSTM Layer(s) with Tanh activation 

3:      - Dropout Layer(s) 

4:      - Fully Connected Dense Layer(s) 

5:      - Output Layer with Softmax activation (size C) 

6: Compile model using Adam optimizer and Categorical Crossentropy loss 

7: Split dataset D into training set and validation set 

8: for each epoch do 

9:     Train LSTM model on (X_train, y_train) 

10:    Validate model on (X_val, y_val) 

11: end for 

12: Save trained LSTM model 

Although LSTM took longer to train, it reached competitive testing accuracy (~90.5%) able to 

recognize slow or stealthy intrusion attempts with higher precision. 

3.2.3. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a very efficient and popular deep learning architecture 

which is capable of extracting local features from structured input data. The CNN was used in achieving 

the spatial patterns learning of the ICPS traffic features. We implemented a CNN architecture consisting 

of several convolutional layers with ReLU activation, followed by max pooling layers and fully connected 

dense layers for classification output. 

Algorithm 3: NN-Based Anomaly Detection 

Require: Preprocessed dataset D = (X, y), number of classes = C 

Ensure: Trained CNN model for anomaly detection 

1: Initialize CNN model with: 

2:      - Convolutional Layer(s) + ReLU activation 

3:      - Max Pooling Layer(s) 

4:      - Fully Connected Dense Layer(s) 

5:      - Output Layer with Softmax activation (size C) 

6: Compile model using Adam optimizer and Categorical Crossentropy loss 

7: Split dataset D into training set and validation set 

8: for each epoch do 

9:     Train CNN model on (X_train, y_train) 

10:    Validate model on (X_val, y_val) 

11: end for 

12: Save trained CNN model 

We trained the model using binary cross-entropy loss and Adam optimzier and achieved a testing 

accuracy of 91.2% CNN model is very useful for spatial anomalies in packet flow data and appropriate for 

real time network. 

3.3. Mathematical Representation 

The federated learning approach used in the CNN-LSTM hybrid model can be represented using the 

following equations. Let X={X1,X2,...,Xn} represent the input features and θi be the parameters of the local 

model at client iii. The local training function can be expressed as: 

 
After each communication round, the central server computes the global model parameters using 

federated averaging: 
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The global model is updated iteratively over multiple rounds. For a given instance XXX, the final 

prediction probability is: 

 
Where f denotes the global CNN-LSTM model that outputs a binary classification result (0 for normal, 

1 for anomaly). 

The proposed framework called Cyber Sentry was developed for cyber defence and its 

experimentation and development were performed based on modern deep learning libraries and 

simulation tools that ensure scalability, performance, and reproducibility. We carried out the whole 

implementation in Python 3.10, not the first-time using Python, but Python is our main programming 

language and given the large ecosystem of data science libraries makes it a natural choice. TensorFlow and 

Keras libraries were used for the development of deep learning models. Keras was used as a high-level 

API for the building and training of the CNN, LSTM and hybrid federated models and Tensorflow was 

used as the backend for computational operations, gradients and optimization of the model. The second 

step is to simulate federated learning, TFF (TensorFlow Federated) is used here for this purpose. 

Meanwhile, TFF enabled decentralized training and aggregation protocols, taking advantage of FedAvg 

(Federated Averaging) algorithm to synchronize parameters across edge devices. Pandas NumPy and 

Scikit-learn were used for data preprocessing and feature engineering. In particular, for feature selection 

methods such as Recursive Feature Elimination (RFE) and Principal Component Analysis (PCA), scikit-

learn has been used. Matplotlib and Seaborn were used to visualize data distributions, model performance 

and training curves. All experiments were performed on a workstation with an NVIDIA RTX 3060, 32 GB 

RAM and 1TB SSD. It also validates computational feasibilities in real application of industrial edge 

deployments by conducting tests of the federated model on a simulated edge environment with multiple 

Raspberry Pi 4 configurations. 

 

4. Results and Discussion 

4.1. Evaluation Metrics 

Any detection system in the field of machine learning-based cybersecurity heavily depends on the 

evaluation metrics used. Different performance measures were used in this research to evaluate the 

accuracy and speed of the proposed intrusion detection models. They are Accuracy, Precision, Recall, F1-

Score, Specificity and Receiver Operating Characteristic Area under Curve (ROC-AUC). We use these 

metrics to assess the classification capacity of the model especially between benign and malicious Network 

Behaviors in Industrial Cyber-Physical Systems (ICPS). 

4.1.1. Confusion Matrix 

The confusion matrix presents the model's performance across four key values: 

• True Positives (TP): Correct identification of intrusions. 

• True Negatives (TN): Correct identification of normal traffic. 

• False Positives (FP): Normal instances misclassified as attacks. 

• False Negatives (FN): Attacks that were missed by the system. 

• Using these components, we compute the following: 
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Table 1. Confusion Matrix for Federated CNN-LSTM Model 

Actual \ Predicted Normal Anomaly 

Normal 4850 150 

Anomaly 120 4880 

This confusion matrix illustrates a high true positive rate (4880), showing that the model accurately 

identifies most anomalies, and a low false positive rate (150), confirming the model’s reliability in avoiding 

false alerts. 

4.2. Dataset Description 

In this study, the RT-IoT2022 dataset was utilized, providing a total of 123,117 records and 83 features 

depicting normal and malicious traffic samples in a simulated ICPS environment. These cyberattack types 

consist of SYN flood, ARP spoofing, brute-force login, and DNS amplification. These include packet-level 

attributes (e.g., protocol, source, and destination ports), statistical characteristics based on time (e.g., inter-

arrival times), and flow characteristics. In label traffic sample, 0 is normal traffic sample and 1 is attack. 

The following preprocessing steps were applied: normalization, one-hot encoding, and dimensionality 

reduction using PCA and RFE. The data set was split into 80% training and 20% testing sets. 

Table 2. Sample of RT-IoT2022 Dataset 

Protocol Packet Size Flow Duration Source Port 
Destination 

Port 

Attack 

Label 

TCP 150 2.4 ms 443 51128 0 

UDP 128 1.9 ms 53 34782 1 

Data preprocessing involved: 

• Imputing missing values using median imputation, 

• Normalizing all numerical values between 0 and 1, 

• Feature reduction using PCA and Recursive Feature Elimination (RFE), 

• Splitting the dataset into 80% training and 20% testing. 

4.3. Correlation Matrix 

Upon reviewing the correlation matrix, we saw weak to moderate correlation of most features against 

the target label (anomaly). Here Packet Size, Flow Duration, Protocol and Packets per Second contributed 

the most to model prediction. Principal Component Analysis (PCA) transformation was done on this 

dataset which explains 95% variance in the first five principal component, this helps in optimizing training 

and dimension reduction. 

The correlation matrix was also used to remove highly collinear features to reduce the computational 

overhead to deploy the model while ensuring the same level of accuracy. This also helps in preventing 

overfitting hence leads to generalization. 

4.4. Deep Learning Classifiers 

This research evaluated three models, including a Convolutional Neural Network (CNN), a Long 

Short-Term Memory (LSTM) network, and a federated CNN-LSTM hybrid model. The same preprocessed 

RT-IoT2022 dataset was used to train each model, and each model was evaluated on the same test set. 

4.4.1. Convolutional Neural Network (CNN) 

We trained the CNN model with a stacked arrangement of 2 convolutional layers, max pooling and 

fully connected dense layers. CNNs learn spatial dependencies and also patterns on structured input. The 

training accuracy was 93.5% and the accuracy on test set was 91.2%. Our results show 0.91 for F1-Score 

and 0.95 for ROC-AUC. Overall classification accuracy is highest through CNN and lowest through SE, 

and sequential anomaly detection produces curricular and poorer performance through CNN given the 

limited temporal awareness. 

4.4.2. Long Short-Term Memory (LSTM) 

LSTM was applied to extract temporal patterns across time windows in network traffic. It returned a 

training accuracy of 92.8 %( Training:  92.8% Testing: 90.5%), precision of 0.88, recall of 0.91, and ROC-

AUC of 0.94. LSTM took longer to converge due to the nature of the architecture, but performed better than 

CNN when the number of class pattern count increased, showcasing its ability to learn patterns over time 

and especially with regard to the number of packets per class, performing better than CNN for time-

dependent attacks such as slow brute-force intrusion detection. 
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Figure 3. Feature Correlation Heatmap 

4.4.3. Federated CNN-LSTM (Hybrid Model) 

TensorFlow Federated was used to train the federated CNN-LSTM hybrid model. We aggregated 

the local models learned in individual nodes by Fed Avg (Federated Averaging). The model achieved: 

Training Accuracy: 95.2%, Testing Accuracy: 93.8%, Precision: 0.92, Recall: 0.94, F1 Score: 0.93 and ROC-

AUC: 0.96 

This hybrid model offers the best generalization and classification power, while also preserving 

data privacy by not sharing raw data across edge nodes 

We have established the federated hybrid model that outperforms the others in all classification 

metrics but also ranks first in speed of convergence and low overfitting as seen from the low gap between 

training and validation accuracy. 

4.5. Model Robustness and Anomaly Sensitivity 

The federated model achieves the largest recall (0.94), which relates to ensuring maximum anomaly 

detection, as well as the lowest false positive rate (150 misclassified normal instances), and the latter one is 

particularly essential in industrial environments to prevent unnecessary shutdowns or alerts. 

Finally, ROC-AUC score of 0.96 indicates that it has a very high confidence of differentiating attack 

and normal traffic and we can deploy it in ICPS in real-time. 

Table 2. Classifier Performance 

Classifier Accuracy Precision Recall F1 Score ROC-AUC 

Federated 

CNN-LSTM 
93.8% 0.92 0.94 0.93 0.96 

LSTM 90.5% 0.89 0.91 0.90 0.94 

CNN 91.2% 0.90 0.88 0.89 0.93 
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Figure 4. Line Graph of Accuracy over Epochs 

 

Table 3. Computation Cost Overview 

Algorithm Test Loss AUC (Test) Time Taken 

NN-Based Anomaly 

Detection 
0.27 0.89 3.1 sec 

LSTM-Based 

Anomaly Detection 
0.22 0.92 2.8 sec 

FederatedCNN-

LSTM 
0.18 0.95 2.3 sec 

This highlights the computational efficiency of the federated CNN-LSTM model while not sacrificing 

accuracy, as the model achieved the lowest test loss and test time out of all models tested. 

 

5. Conclusion and Future work 

We have studied and proposed a novel, federated, deep-learning based intrusion detection 

framework that specifically targets ICPS (called Cyber Sentry), and evaluated its effectiveness. Due to the 

rapid growth of industrial automation along with the wide range of interconnections between the devices 

we use, protecting ICPS from complex and growing cyber threats continues to be an essential need. Cyber 

Sentry solves the common problems faced by a traditional centralized security solution (data privacy, no 

scalability, and having to download all the data) with the help of Federated Learning (FL), which makes 

the approach decentralized data aware. The algorithm enables edge devices to jointly train models using 

local data, only sending cryptographically shrouded model updates, thus ensuring privacy and 

minimizing bandwidth requirements. A total of three deep learning models (Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), and a hybrid federated CNN-LSTM) were also 

implemented to evaluate its performance. These models were trained and tested on the RT-IoT2022 dataset 

based on realistic network behaviors and attack vectors that are usually present in ICPS scenarios. Among 

various trained models, the Federated CNN-LSTM model performed best with an accuracy of 93.8% 

during testing, as well as high precision, recall, and ROC-AUC scores. The experimental results also 

exhibited that it performed well in identifying various type of attacks, including ARP spoofing, SYN flood 

and brute-force login attempts. The federated model offered comparable performance without 

compromising the privacy of delicate operational data, when juxtaposed against its centralized 

counterparts. 

Regarding future work, Cyber Sentry can be extended into an IPS, through integration with 

responses mechanisms, automating the dynamic enforcement of policies and rapidly isolating such threats. 

Additionally, modern Explainable AI (XAI) methods such as SHAP or LIME will be used for better 
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interpretability of the detection outcomes and to make the system even more transparent and trustable by 

industrial operators. We will also look at the use of secure model updates, audit trails, and secure data 

acquisition through the integration of blockchain technology, and deployment in live industrial 

environments (eg, smart grids, water treatment plant). This will take Cyber Sentry from research towards 

practical and large scale deployment in protection of next generation industrial systems. 
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