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Abstract: The fast propagation of malware across the internet requires the development of 

advanced classification and detection techniques. Traditional signature-based detection malware 

methods often fail to identify new and obfuscated variants which demand advanced machine 

learning-based solutions. We propose MalwareVision, a framework based on deep learning for the 

classification of malware samples. The model was trained on the Malimg dataset comprising 

images of 9,339 malware images across 25 families and evaluated based on accuracy, precision, 

recall, and F1-score metrics. We observe that the model achieved an impressive accuracy of 95.09% 

in both the training and testing datasets and that the precision and recall values remained high for 

most malware families. The results highlight the effectiveness of deep learning-based Convolutional 

Neural Network (CNN) for malware classification. The proposed MalwareVision framework offers 

a scalable, automated solution for malware classification, contributing to the advancement of AI-

driven cybersecurity defenses. 

 

Keywords: Convolutional Neural Networks (CNNs); Cybersecurity; Deep Learning; Malware 
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1. Introduction 

With the growth of digital technology and networked appliances, the strike surface for cyber threats 

has been considerably expanded. Malware is a ubiquitous and evolving threat that poses an unending 

challenge to enterprise security staff and individuals (1). Recent industrial reports suggest that millions of 

malware variants are being developed consistently. Criminals are using more and more sophisticated 

methods to avoid detection such as obfuscation, polymorphism, and encryption (2). The lifecycle of a 

malware attack includes various stages as shown in Figure 1. Traditional heuristic-based systems rely on 

pre-defined signatures and are weak at finding advanced modifications of the same malicious code (3). 

Alarmingly, the spread of Internet of Things (IoT) devices has resulted in additional infiltrations of weak 

security. Malware attacks targeting the IOT create massive problems – ranging from individual identity 

thefts to large-scale DDoS attacks (4). This situation becomes more complicated, as many of these devices 

lack adequate malware security mechanisms. From stealing personal information to launching massive 

distributed DDoS attacks, malware attacks on IoT can lead to disastrous outcomes (5,6). This growing 

threat landscape necessitates more intelligent and smarter malware detection and classification 

mechanisms to be able to detect and classify the new emerging threats as their behaviors change and 

evolve. The malware can spread in multiple ways affecting IOT devices while stealing and damaging 



Journal of Computing & Biomedical Informatics                                           Volume 08  Issue 02                                                                                         

ID : 961-0802/2025  

critical data (7). The hierarchical model of cyber threats presenting infection sources, infection targets, 

propagation methods, and defense and mitigation strategies is presented in Figure 2.  

 

Figure 1. Malware attack lifecycle depicting the sequential phases involved in the attack 

The classification of the malware variants into specific families is one of the primary problems that 

comes across during malware detection. As a result, malware developers are continuously introducing 

new variants of malware with minor alterations to bypass detection mechanisms. Antivirus solutions still 

struggle to handle this diversity which leads to increasing false negatives and compromised security (8). 

To deal with these challenges and find optimized solutions for automated malware classification, 

various ML and Deep Learning (DL) techniques were examined by the researchers. However, conventional 

machine techniques require manual feature engineering and have a lesser generalization ability to classify 

malware variants into diverse families (9). Moreover, malware datasets have become more sophisticated 

and larger requiring scalable and efficient classification techniques. 

The advanced form of ML i.e., DL has emerged as a transformative approach by offering automatic 

feature selection for effective malware classification. DL algorithms, specifically Convolutional Neural 

Networks (CNNs) exhibit efficient performance by learning hierarchical features directly on unseen data 

without executing feature extraction as a separate stage. The translation of malware binaries into grayscale 

images and the implementation of CNN architecture is a promising solution for malware classification (10).  

CNNs have produced remarkable results on a range of image classification tasks making them 

suitable choices for malware binary images. The generalization ability of CNN can be enhanced by 

optimizing the model through hyperparameter optimization (11). 

 
Figure 2. The Cyber Threat Pyramid representation 
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This research aims to develop a robust malware classification framework leveraging a DL-based 

CNN model to improve accuracy and adaptability. The key objectives of this study include: the 

development of an efficient and lightweight malware detection framework suitable for real-time 

deployment in resource-constrained environments. Moreover, we compared the proposed DL framework 

against modern ML approaches focusing on accuracy. By addressing the challenges of present malware 

detection techniques and leveraging DL advancements, this research designs a robust solution for 

automated malware classification in dynamic cybersecurity landscapes. 

The subsequent sections of this study are organized as follows: Section 2 offers a review of previous 

malware classification techniques. Section 3 illustrates the methodology comprising dataset acquisition 

and preparation, feature extraction, classification, and evaluation metrics. Section 4 details the performance 

results along with the comparison of the proposed framework with Straight-Of-The-Art techniques. 

Section 5 concludes the study along with the future directions.  

2. Related work 

This section will explore various malware classification methods including static, Machine learning 

(ML), and DL techniques for improved security against malware. Cybersecurity specialists continuously 

research malware detection techniques to improve security and prevent infections.  

2.1. Static Analysis for Malware Detection 

The study (12) performed a static analysis of various Android executables supporting collaborative 

malware detection. The authors proposed an approach that worked by extracting features from Android 

executables without executing them and produced an efficient method for malicious software detection. 

The researchers emphasized the advantages of static analysis in mobile security, particularly in resource-

constrained environments. However, the method's high false positive rate and inefficiency in classifying 

malware using APIs were also highlighted by the researchers.  

Another research (13) focuses on malware classification using extracted API sequences obtained via static 

analysis. The study highlighted that through the examination of API calls in executable programs, malware 

samples can be divided among benign and malicious software. The limitations found in static analysis 

were addressed by the interdiction of obfuscation techniques that further demonstrated the shortcomings 

of static analysis. Recently, the study (14)  presented Eureka, a framework based on static malware 

analysis. It analyzed malware samples to find meaningful features and improve on the existing techniques 

of static detection. The target was to improve the accuracy of malware classification while studying 

structural properties without running code thereby reducing the chances for malicious code execution 

when you're analyzing it statically. 

2.2. Machine learning-based malware classification  

With the rapid growth of AI-based models, researchers have been researchers have examined various 

ML technologies for more effective malware classification across families of viruses. A recent study (15), 

examined a number of ML techniques for effective classification and detection of malicious software while 

highlighting multiple developments and challenges in the field of cybersecurity. The researchers grouped 

ML techniques into three types - static, dynamic, and hybrid. The survey also emphasized feature 

extraction from a given dataset, including frequency analysis of opcode and monitoring system calls. The 

study discussed many problems encountered, such as adversarial attacks, evasion techniques, and 

imbalanced datasets. The findings emphasized that ML models play an efficient role in improving malware 

classifying accuracy. A different study (16) investigated the ensemble methods based on ML for detecting 

Windows Portable Executable (PE) malware. To determine the best strategy for Windows PE-based 

malware samples, the study investigated several ensemble techniques, including random forest, gradient 

boosting, and stacking generalization. The efficiency of manual feature engineering in enhancing the 

effectiveness of ML-based malware categorization was highlighted by the authors. According to the study, 

combining many base models to create a more potent ensemble model can increase classification accuracy 

and solve the issue of class bias in unbalanced datasets. 

Researchers explored Self-Organizing Feature Maps (SOFM) and system behavior  data for malware 

classification (17). The authors examine the unsupervised ML techniques to identify malware variants 

without relying on predefined class labels. They suggested that by the clustering of system activity logs, 

the SOFM can identify anomalies indicating malicious behavior. They also highlighted that the 
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combination of SOFM with ML models can enhance predictive accuracy while reducing false positives in 

malware detection systems. 

A Novel Multi-View Fuzzy Consensus Clustering Model (MVFCC) was proposed by (18) to detect 

and analyze malware threats. The research introduced a fuzzy logic-based clustering technique that 

combines various malware samples depending on their behavioral similarities. The experiments revealed 

that the proposed MVFCC model offered interpretable clustering results while effectively classifying 

malware families and enhancing cyber threat detection accuracy. Multi-view heuristic analysis was 

explored by researchers in (19). The researchers focused on cyber threat identification by applying 

heuristic-based feature selection, adversarial analysis, and meta-learning techniques. The study revealed 

that multi-view analysis is capable of offering improved threat profiling and advanced persistent threats.  

2.3. Deep learning-based malware classification  

Deep learning techniques, particularly CNNs and Recurrent Neural Networks (RNNs) have been 

increasingly applied for malware categorization. CNNs are particularly effective for pattern recognition 

and image classification, making them well-suited for malware image detection tasks (20). Studies have 

shown that modern CNN architectures can achieve high accuracy in large-scale image classification tasks 

(21). 

The study (22) introduced a multi-view feature fusion approach for malware identification based on 

DL while integrating multiple feature extraction techniques to improve classification accuracy. The 

proposed model leverages CNNs, RNNs, and ensemble learning techniques to analyze different feature 

sets, such as opcode sequences, API call traces, and binary images. By combining these multiple 

perspectives, the model enhances detection rates and robustness against obfuscation techniques. The paper 

highlights that DL models outperform traditional classifiers when properly trained on diverse feature 

representations. Similarly, the work in (23) investigated the impact of automatic feature selection and 

highlighted that DL models can outperform traditional ML models by learning hierarchical feature 

representations directly from raw data. The findings suggest that DL models, particularly CNNs and deep 

neural networks, can significantly improve classification tasks by reducing the reliance on manual feature 

engineering. This is highly relevant to malware classification, where traditional feature extraction (such as 

API calls or opcode sequences) can be time-consuming and prone to evasion techniques. Another research 

(24) introduced an improved CNN model for malware classification. By leveraging CNNs, the study 

demonstrated how malware binaries can be transformed into image representations and classified 

effectively. The authors proposed architectural enhancements to traditional CNN, optimizing its ability to 

capture discriminative patterns in malware samples. The study highlighted that DL-based approaches 

outperform conventional signature-based detection methods, offering better generalization to novel 

malware variants. 

The study (25) surveyed recent developments in malware classification, focusing on behavioral 

analysis, static code inspection, and hybrid approaches. It provided an in-depth examination of malware 

families, their evolving structures, and how modern classifiers differentiate among variants. The study also 

discussed feature engineering techniques, including API call graphs, opcode sequences, and binary 

visualization along with the evaluation of automated feature extraction using DL. The study highlighted 

the effectiveness of DL techniques such as CNNs, autoencoders, and graph neural networks (GNNs) for 

extracting high-level malware signatures. A comparison between static analysis and intelligent 

classification based on advanced ML techniques for effective malware classification is depicted in Figure 

3. 

Despite advancements in DL for malware classification, certain limitations exist. Many existing 

models struggle with class imbalance, leading to poor recall scores for underrepresented malware families 

(26). Additionally, DL-based malware detection systems require significant computational power, limiting 

their feasibility in environments with restricted resources (22). This research focuses on optimizing 

lightweight DL architectures specifically CNNs, optimizing the model architecture for enhanced malware 

classification performance. The summary of existing literature for malware classification is shown in Table 

1.  
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Figure 3. Comparison between static and advanced ML approaches for malware classification 

Table 1. Summary of Related Work 

Study Approach Key Findings 

Static Analysis-Based Malware Detection 

[1] Static analysis of Android executables 
Effective for malware detection but has a high false 

positive rate. 

[2] API sequence analysis via static analysis 
API call patterns distinguish malware; obfuscation 

techniques improve detection. 

[3] 
Eureka framework for static malware 

analysis 

Extracts structural features for improved malware 

classification. 

ML-Based Malware Classification 

[4] 
Review of ML techniques in malware 

detection 

Categorizes ML techniques; highlights DL's growing 

role. 

[5] 
Application of ensemble learning for 

Windows PE malware detection 

The ensemble technique improves accuracy, 

particularly for imbalanced datasets 

[6] 
SOFM and system behavior data for 

malware classification 

Unsupervised learning detects malware variants 

without labels. 

[7] 
MVFCC: Multi-View Fuzzy Consensus 

Clustering 

Groups malware based on behavior; enhances threat 

intelligence. 

[8] 
Cyber threat attribution using Multi-

View Heuristic Analysis 

Improves threat profiling for advanced persistent 

threats (APTs). 

DL-Based Malware Classification 

[9] 
Multi-view feature fusion with CNNs, 

RNNs, and ensemble learning 

Enhances detection rates and resists obfuscation 

techniques. 

[10] Automatic feature extraction in DL DL reduces reliance on manual feature engineering. 

[11] 
CNN-based malware classification with 

architectural enhancements 

Converts malware binaries to images; CNNs 

outperform traditional methods. 
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[12] 
Survey on malware classification and 

feature extraction 

Discusses automated feature extraction via CNNs, 

autoencoders, and GNNs. 

In this study, we analyze state-of-the-art malware classification techniques with DL and emphasize 

their role in cybersecurity, advocating for further research opportunities in this area to build robust and 

efficient malware classifiers. While integrating advanced DL techniques, this research aims to contribute 

to cyber security by developing an advanced solution with improved predictive accuracy for threat 

detection. 

 

3. Materials and Method 

We have implemented DL techniques for the classification of malware across diverse families. We 

have introduced a new framework called MalwareVision that takes pre-translated grayscale images as 

input and applies optimized CNN for effective classification. The proposed methodology is divided into 4 

key stages: 1) Data acquisition, 2) Data preprocessing, 3) Feature Extraction & Classification, and 4) 

Performance evaluation. Utilizing the proposed framework, we can work through each stage in a 

systematic way that allows classifying malware accurately and efficiently to provide a solution to modern 

cybersecurity attacks. The following section describes each stage of MalwareVision in detail.  

Stage 1: Data Acquisition   

Model performance is directly related to data acquisition, which is an essential step in the process of 

malware classification. The study utilized a Malimg dataset of 9,339 images comprising malware of 25 

different families. It was first proposed by Nataraj et al. in (27), and it also has been used in many DL-

based malware analysis studies. An overview of the applied Malimg malware dataset is outlined below in 

Table 2.  

Table 2. Overview of the Malimg Dataset 

Attribute Description 

Dataset Malimg Malware Dataset 

Total Samples 9,339 

Number of Malware Families 25 

In contrast to the normal raw malware datasets, Malimg offers preprocessed grayscale images, 

where malware binaries have been transformed into images. These images correspond to the binary 

structure of malware executables where pixel intensities map to byte values. The pre-transformed 

grayscale images provide pattern identification and feature representation enabling deep-learning models 

to process raw executable files without manual feature engineering. These images are then investigated to 

identify data similarities across distinct malware families while enhancing model robustness and offering 

alternate representations of malware samples. Moreover, this approach prevents malware detection from 

relying solely on static analysis which may evaded by advanced malware variants. A batch of these 

grayscale images along with their corresponding class labels presenting the inherent patterns and textures 

of diverse malware classes is visualized in Figure 4.   

The Malimg dataset presenting the malware class names, malware family, number of malware 

samples per class, and number of malware samples per malware is summarized in Table 3. A pie chart 

presenting the distribution of malware samples across 25 diverse families is shown in Figure 5.   

Stage 2: Data preprocessing  

To ensure optimal model performance and reliable classification, we performed a series of 

preprocessing steps on the malware image dataset. The images were loaded using the Keras 

ImageDataGenerator function, which facilitated the organization of data into batches. To create a 

standardized data set, all malicious images were resized to 64×64 pixels. This not only keeps computational 

costs down but also preserves key structural features of the images. The pixel intensity values of these 

images are scaled between the range 0 and 1. By scaling all pixel values by 1/255, the model's convergence 

rate can be accelerated in training. The dataset is split into training and testing portions, with 70% of the 

data used as training data and 30% for testing. This method helps to avoid overfitting the model on the 

training data so that it will work equally well for unseen malicious samples. Proper data splitting can 

prevent overfitting and make it possible for the model to generalize to unseen malware samples. The 

malware categories corresponding to each data point were then one-hot encoded, a method of setting each 
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malware category to a vector. This encoding scheme allows the model to learn malware patterns effectively 

and to distinguish among unseen samples. 

 

Figure 4. Visualization of malware variants of the Malimg dataset 

Table 3. Statistical summary of Malimg dataset 

Malware 

class name 
Malware family 

Number of malware 

samples per class 

Number of 

malware samples 

per family 

Agent.FYI Backdoor 116 
274 

Rbot!gen Backdoor 158 

Adialer. C Dialer 122 

730 Dialplatform. B Dialer 177 

Instantaccess Dialer 431 

Lolyda.AA1 Password stealer (PWS) 213 

679 
Lolyda.AA2 PWS 184 

Lolyda.AA3 PWS 123 

Lolyda. AT PWS 159 

Fakerean Rogue 381 381 

Alueron.gen!J Trojan 198 

760 

C2LOP.P Trojan 146 

C2LOP.gen!g Trojan 200 

Malex.gen!J Trojan 136 

Skintrim. N Trojan 80 

Dontovo. A Trojan Downloader 162 

661 

Obfuscator. AD Trojan Downloader 142 

Swizzor.gen!E Trojan Downloader 128 

Swizzor.gen!I Trojan Downloader 132 

Wintrim. BX Trojan Downloader 97 
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Allaple. A Worm 2949 

5748 
Allaple. L Worm 1591 

VB.AT Worm 408 

Yuner. A Worm 800 

Autorun.K Worm.AutoIT 106 106 

Total 9339 

 

Figure 5. Overview of the MalimG dataset 

The purpose of preprocessing techniques is to prepare the dataset, reduce computational load, and 

optimize the input for malware classification. These steps converted the transformed images into a format 

that allows for structured datasets to be formed; this is the prerequisite for effective training and 

evaluation. 

In the end, the preprocessed dataset is found to contain no inconsistencies or errors. This final stage 

ensured that all the grayscale images and their associated malware labels were matched. Such qualitative 

checks have confirmed that a correct conversion has been made between image forms and label placement, 

while at the same time revealing the characteristic texture patterns.  

During preprocessing, we have applied data security measures by using a Virtual Machine 

specifically VirtualBox with snapshots and no internet access to isolate malware samples hence preventing 

contamination from real malware threats. The systematic approach followed to preprocess the dataset is 

depicted in Figure 6.  

Stage 3: Feature Extraction and Classification 

The proposed framework, named MalwareVision, leverages a convolutional neural network for 

automated feature extraction and classification of malware images. The architecture implemented to 

produce an optimized version of CNN for effective malware classification is depicted in Figure 7. The 

model takes 64×64×3 sized input images and passes them through a series of layers. The architecture is 

composed of two convolutional layers; comprising 30 (3 × 3) filters along with the ReLU activation function 

followed by a 2 × 2 max pooling layer. It is subsequently followed by another conv layer with 15 filters 

with a kernel size of 3×3 and also using ReLU. After feature extraction through convolution and pooling, 

the feature maps are flattened into a one-dimensional vector. This single vector is fed into two fully 

connected layers, each having 128 neurons and a ReLU activation function. To prevent overfitting, a 

dropout layer has also been applied. The final layer has multiple output neurons, each corresponding to a 
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different malware class, where classification is achieved through the application of the softmax activation 

function. The final layer has several output neurons, each representing a different malware family (such as 

Adialer. C, Allaple. A, Allaple. L, etc.). 

 

Figure 6. Systematic preprocessing of the Malimg dataset 

 

Figure 7. Optimized architecture of CNN 

Unlike traditional approaches that rely on manual features, CNNs learn spatial and structural 

patterns directly from grayscale malware images, represented as 64×64×3 matrices. The convolutional 

layers in the model capture local texture variations and malware-specific structural characteristics. 

Additionally, a MaxPooling 2-dimensional layer reduces the spatial dimensions while preserving crucial 

features. The other convolutional layer, further refines the extracted representations, followed by another 

MaxPooling2D layer that downsamples the feature maps to 14×14×15. A Dropout layer (0.25) is 

incorporated at this stage while avoiding overfitting and enhancing generalization. 

After feature extraction, the proposed framework proceeds with classification. The softmax output 

layer comprising 25 neurons, corresponding to 25 malware families assigns probability scores to each class. 

The model has numerous trainable parameters that have been optimized using the Adam optimizer, which 
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adaptively adjusts the learning rate for stable convergence. Categorical cross-entropy loss is used as the 

objective function, given the multi-class classification nature of the problem. 

To optimize classification performance, the CNN was trained using the Adam optimizer, which 

adaptively adjusts the learning rate for stable convergence. The model was trained for 22 epochs with 

continuous monitoring of training and testing accuracy. The final trained model achieved reliable 

classification performance, and a confusion matrix was generated to analyze misclassifications across 

different malware families. With a structured DL architecture, MalwareVision effectively captures 

hierarchical features from malware images, reducing manual feature engineering efforts and improving 

detection accuracy. The trained model was saved as malware.h5, enabling future deployment for real-

world malware detection tasks. The proposed malware classification framework is shown in Figure 8.  

Stage 4: Performance assessment  

Performance assessment is an essential task to determine the efficiency and generalizability of the 

proposed approach (28). Appropriate performance measures ensure the correct predictions while 

categorizing malicious software into diverse families. This evaluation attempts to anticipate the future 

evolution of malware by devising methods for efficient and reliable predictions. We have applied widely 

used performance measures such as accuracy, precision, recall, F1-score, and loss to guarantee performance 

robustness for cybersecurity applications (29,30). 

 

Figure 8. MalwareVsion: Malware classification framework 

To evaluate the classification performance of MalwareVision, a number of common evaluation 

indicators have been used, including accuracy, precision, recall, F-score, and loss. The accuracy measure is 

defined as the rate of how many malware samples were classified correctly. Precision quantifies the ratio 

of correctly predicted positive instances to all predicted positives, to ensure that the model reduces false 

positives effectively. In addition, recall checks whether a model can identify true positives among all 

available cases; it tests how likely each sample is to be truly a good match (31). The F1-Score is the harmonic 

mean of precision and recall and combines both measures into a single metric (32). These performance 

measures have been given below mathematically by the formula: 
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Precison =
TP

TP+FP
              (1) 

Recall =
TP

TP+FN
                (2) 

F1 − Score =
Precision∗Recall

Precision+Recall
             (3) 

Accuracy =
TP+TN

TP+TN+FP+FN
            (4) 

where TP (True Positives) represents correctly classified malware samples, TN (True Negatives) 

represents correctly classified benign samples, FP (False Positives) are benign files incorrectly classified as 

malware, and FN (False Negatives) are malware files misclassified as benign. Additionally, the loss 

function used in this study is categorical cross-entropy, which measures the divergence between the 

predicted probability distribution and the actual distribution. It is calculated as follows: 

Loss = −∑ yj log( y^j)
N

j=1
 

where yj represents the actual class label, y^j is the predicted probability for class j, and N is the 

total number of classes. A decrease in training and testing loss indicates improved learning and better 

generalization of new data. 

 

4. Results 

The training accuracy increased steadily throughout the epochs, beginning at 47.87% in the first 

epoch and ultimately reaching 96.82% in the last. The accuracy improved, indicating that the model learned 

the recurring patterns and distinguishing characteristics in the training data. Throughout the epochs, the 

testing accuracy was also a discernible rise. In the first epoch, it had an accuracy of 66.63%, but by the time 

it got to the last epoch, it had reached a high of 95.90%. The ability of the model to generalize successfully 

to date it has not encountered before is demonstrated by the steady improvement in testing accuracy. 

Figure 9 shows the training and testing accuracy of the proposed framework. 

 

Figure 9. Training and testing accuracy 

As the epochs continued, the training loss slowed until it reached its lowest point. The value began 

at 1.7587 and dropped down to 0.0940 in the final period. The declining trend suggests that the model 

successfully minimized the training loss and improved its ability to make accurate predictions by 

improving its ability to make accurate forecasts. Analogous to the training loss, the testing loss improved 

as more epochs passed. In the first epoch, it was 1.0130, and by the time the last epoch rolled around, it had 

dropped to 0.1636. The fact that the testing loss has decreased suggests that the model generalized 

effectively and produced accurate predictions based on testing data it had not seen before. Figure 10 shows 

an epoch-wise loss graph for the proposed framework. 
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Figure 10. Epoch-wise loss graph 

The results achieved from both the training and testing phases reveal that our customized CNN is 

efficient at learning and identifying intricate data patterns. The model effectively differentiated among 

diverse malware classes indicating its efficiency in multi-classification. Although it suffered from a 

relatively low loss, yet the optimized model showed sophisticated representations based on the training 

data which ultimately enabled it to produce high predictive accuracy in each epoch. Similarly, the steady 

increase in testing accuracy presented that the model has strong generalization ability for unseen data. In 

the same way, the gradual decrease in training and testing losses indicates that the model is capable of 

minimizing training and testing errors while capturing the underlying complex data patterns. This 

proficiency of the proposed optimizations in the CNN model presents that it can effectively classify 

malware families while demonstrating epoch-wise enhanced accuracy and decreased loss. 

4.1. Class-wise testing results  

This section demonstrates the performance evaluations for each malware class by reflecting 

precision, recall, and F1-score for the proposed Malware Vision framework. The level of precision refers to 

how accurate the model is when it comes to making positive predictions. In this testing situation, the 

precision numbers fall between 0.00 and 1.00. Classes 0, 4, 14, 17, 19, and 22 all achieved a precision score 

of 1, which indicates that the model did not provide any erroneous positive predictions for any of these 

categories. The precision ratings for the other classes ranged from 0.69 to 0.99, showing a minimal number 

of false positives overall. The class-wise precision score is shown in Figure 11.  

The capacity of a model to correctly detect positive cases is measured by a statistic called recall, also 

referred to as sensitivity or the true positive rate. It is the proportion of correct diagnoses to the aggregate 

of correct diagnoses and erroneous negative results. Except for classes 5 and 21, the recall values for all 

other classes are either exactly 1.00 or very close to 1.00. This suggests that the model could accurately 

identify most of the positive examples of these classifications. On the other hand, the recall is 0.00 for class 

5 and 0.10 for class 21, indicating that the model had difficulty accurately identifying positive cases for 

these classes. The class-wise recall score is presented in Figure 12.   

The F1-score is calculated by taking the harmonic mean of both precision and recall, which provides 

a level of equilibrium between the two metrics. It is a metric that determines how accurate a model is. The 

F1 scores for the majority of the classes fall in the range of 0.96 to 1.00, indicating a high level of accuracy 

in classifying the examples. However, classes 5, 21, and 20 have considerably lower F1 scores, with values 

of 0.00, 0.17, and 0.64, respectively. This indicates that the model needed help correctly categorizing 

examples for these classes. The support indicates the total number of instances contained within each class. 

It varies from class to class, with possible values spanning from 18 to 900. The support values allow a better 

comprehension of the distribution of instances within the dataset. The class-wise F1-score is graphically 

presented in Figure 13.  
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The results of the tests indicate that the model did well in successfully classifying the majority of the 

categories. This is demonstrated by the high precision, recall, and F1-score values, which all point to this 

conclusion. Despite this, there are a few categories in which the model performed poorly, which led to a 

lower recall percentage and F1 score. The relevance of analyzing the model's performance on a per-class 

basis to identify areas that need additional improvement is brought into focus by these findings. The 

confusion matrix for the proposed MalwareVision framework is shown in Figure 14.  

 

Figure 11. Class-wise precision score 

 

Figure 12. Class-wise recall score 
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Figure 13. Class-wise F1-score 

 

Figure 14. Confusion matrix of MalwareVision framework 

The Class-wise performance of the proposed framework is shown in Table 4. 

Table 4. Class-wise performance of the proposed framework 

Class precision recall f1- score support 

Adialer.C  1  1  1  34  

Agent.FYI  0.97  1  0.98  32  

Allaple. A  0.99  1  1  900  

Allaple.L  0.99  1  0.99  471  

Alueron.gen!J  1  1  1  58  

Autorun.K  0  0  0  30  

C2LOP.P  0.69  0.81  0.75  42  

C2LOP.gen!g  0.81  0.84  0.82  67  

Dialplatform.B  0.98  0.98  0.98  53  

Dontovo.A  0.98  1  0.99  46  
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Fakerean  1  0.97  0.99  118  

Instant Access  0.99  1  1  142  

Lolyda.AA1  0.95  0.97  0.96  58  

Lolyda.AA2  0.96  0.96  0.96  56  

Lolyda.AA3  1  1  1  43  

Lolyda.AT  1  0.96  0.98  45  

Malex.gen! J  0.98  0.94  0.96  47  

Obfuscator.AD  1  1  1  40  

Robot! Gen  0.95  0.97  0.96  39  

Skintrim.N  1  1  1  18  

Swizzor.gen!E  0.58  0.72  0.64  47  

swizzor.gen!I  0.8  0.1  0.17  41  

VB.AT  0.99  0.98  0.99  109  

Wintrim.BX  0.83  1  0.91  20  

Yuner.A  0.89  1  0.94  246  

 The diagonal dominance in the matrix indicates that the model correctly classifies most malware 

families, as the highest values (highlighted in yellow and green) are concentrated along the diagonal. This 

suggests that the CNN-based model is effective in distinguishing different malware families with a high 

degree of accuracy. However, some off-diagonal values indicate misclassifications, where certain malware 

families are incorrectly classified as others. These misclassifications could be due to similarities between 

certain malware families, leading to feature overlap suggesting that further refinement in feature extraction 

may be necessary to enhance classification accuracy. 

4.2. Comparative analysis  

To prove the effectiveness of the proposed framework, we have conducted a comparative analysis 

that presents improved predictive accuracy of MalwareVision against state-of-the-art techniques. We have 

considered the latest articles published from 2020 to 2024 with a focus on malware classification. Table 5 

reflects the enhanced accuracy of advanced deep learning-based MalwareVision compared to modern 

techniques as shown in Table 5.  

Table 5. Comparative analysis of MalwareVision with modern techniques 

Reference Technique 
Highest 

accuracy % 
Dataset 

Malware 

families 

(33) 
Complex CNN Model 

(Multiple Layers) 
88 

Malware Behavioral 

Dataset (Custom) 
2 

(34) 

 

Code-Aware Data 

Generation with CNN 
90 

VirusTotal 

malware dataset 
3 

(35) Random Forest 87.30 CIC-MalMem-2022 4 

(36) LightGBM 94 CICMalDroid 2020 5 

(37) Neural Networks 94.6 Custom 10 

(38) Random Forest 87.30 
Curated Memory 

Analysis 
4 

(39) Extra Tree 83.05 CIC-MalMem-2022 4 

(40) 
dilated convolutional 

network 
83.53 CIC-MalMem-2022 2 

This study Optimized CNN 95.9 Malimg 25 

The accuracy-based comparison of MalwareVision against modern techniques is presented in Figure 

15.  

4.3. Limitations 

While the proposed DL-based malware classification framework achieved high accuracy, it has 

several limitations. The model's performance is affected by class imbalance, as certain malware families 

had significantly fewer training samples, leading to overfitting along with lower recall and F1-scores for 

those categories (41). Additionally, the reliance on grayscale image transformation may not capture all 

behavioral aspects of malware, limiting its effectiveness against highly obfuscated or polymorphic 
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malware (42). Moreover, the computational complexity of DL models, particularly CNNs, requires 

substantial processing power and memory, making real-time deployment in resource-constrained 

environments challenging (43). Future research should focus on integrating hybrid approaches that 

combine static and dynamic analysis while also exploring methods to improve class balance and 

generalization across diverse malware datasets. 

 
Figure 15. Accuracy-based comparison of MalwareVision against modern technique 

 

5. Conclusions 

This research harnessed advanced deep-learning methods to detect malware, yielding promising 

results. By extensively training and testing on a large collection of malware samples, we gained valuable 

insights. Our custom deep-learning model displayed impressive growth in both the training and testing 

phases. During training, accuracy steadily improved from 47.87% to an impressive 96.82%, and testing 

accuracy also rose from 66.63% to 95.90%. This steady progress shows that the model can perform 

generalization well to new or unseen data. Notably, training and testing losses steadily fell over time, 

reflecting the successful detection of specific patterns and precise predictions. Class-specific testing showed 

that the model worked well for most malware categories.  These findings emphasize the importance of 

class-wise framework evaluation while highlighting areas needing attention in the future. Overall, our 

proposed DL-based MalwaereVision framework demonstrated promising results while making effective 

predictions. Future research should focus on developing cross-platform models that are able to detect and 

classify malware in different environments such as Windows, Linux, and Android, thereby ensuring a 

more robust security framework. 
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