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Abstract: Background: Skin cancer classification is a challenging task due to the fine-grained 

diversity in the appearance of various diagnostic categories. Detecting skin cancer at an early stage 

is vital for enhancing patient outcomes, as the prognosis for this condition greatly improves when 

diagnosed early. Convolutional neural networks have been found to be more effective than 

dermatologists in classifying multiclass skin cancer. Problem: The identification of skin cancer is 

frequently impeded by the subjective analysis of dermoscopic images, resulting in misdiagnoses 

and delayed treatments. The objective of this study is to create a reliable and effective classification 

system using the efficientnetb4 model, which will aid in early detection and ultimately enhance 

patient outcomes. Objective: The main goal of this study is to create a highly efficient and accurate 

classification system for skin cancer using the efficientnetb4 model. The goal of this system is to 

improve the accuracy of diagnoses, minimize misdiagnoses, and enable early detection of skin 

lesions, leading to better patient outcomes and a more efficient diagnostic process in dermatology. 

Methods: The EfficientNetB4 model is trained on the HAM10000 dataset using transfer learning and 

fine-tuning techniques on rotated images, zoomed in and out, and even flipped over to make 

variations. Then, it adjusted the hyperparameters in the fine-tuning step to fine-tune its weights so 

that the model could fit the classification task for skin lesions more precisely. Results: The leading 

model, EfficientNetB4, achieved a Top-1 Accuracy of 89.22%, a Top-2 accuracy of 88.82%, and a top-

3 accuracy of 88.62%. Precision, recall, and F1 scores are computed for each class. This model has 

demonstrated excellent performance in melanoma (MEL) and benign kurtosis-like lesions (BKL). 

Criteria considering high-class imbalance were used in the assessment of Efficient Net classifiers. 

Models with an intermediate level of complexity, such as EfficientNetB4, demonstrated the most 

optimal performance. Confusion matrices were also discovered to be useful in identifying skin 

cancer varieties with the greatest capacity for generalization. Conclusion: Overall, EfficientNetB4 

demonstrated superior performance in classifying multi-class skin cancer. Further development 

would be oversampling or synthetic data generation for even more class-balancing techniques to 

improve performance over underrepresented classes. More medical data, including images and 

clinical data, will probably increase the overall diagnostic accuracy. 
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1. Introduction 

The epidermis is the largest organ that an individual possesses. Skin cancer is one of the most severe and 

fatal manifestations of the illness[1]. Every day, a significant number of people pass away from skin cancer 

[2]. If detected early enough, treating cancer can be effective, even though it can spread swiftly. Early 

detection is crucial since it can raise the likelihood that a treatment will be successful [3]. New data shows 
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that 20% of skin cancer cases became so advanced that survival was no longer an option [4]. Doctors detect 

skin cancer in a variety of ways. They examine your skin, take images, and occasionally do a biopsy [5].To 

aid in the identification of melanoma, the American Centre for the Study of Dermatology created a 

handbook. The acronym ABCD rule refers to the set of guidelines and stands for asymmetry, border, color, 

and diameter. When a mole is asymmetrical, it indicates that one half does not match the other half. The 

term “border” describes a mole’s ragged or ill-defined boundaries. Because moles are present in a spectrum 

of hues, the term “color” is an accurate description. A mole is considered to be of greater size when its 

diameter exceeds 6 millimeters, an amount comparable in size to that of a pencil eraser [6]. Dermoscopy 

utilizes a handheld instrument to magnify and illuminate skin lesions, providing a non-invasive 

method[7]. When diagnosing melanoma, dermoscopy is a more precise method than visual inspection [8]. 

Deep Neural Networks ’(DNNs) increasing use in picture categorization has been a significant 

advancement in machine learning in recent years. Directed Neural Networks (DiNNs) have demonstrated 

exceptional performance across a range of image classification tasks, such as segmenting images, 

identifying faces, and detecting objects [9]. Medical photos can have their features automatically extracted 

by deep learning, which can subsequently be used to categorize the images or pinpoint particular features 

within the images[10]. This study employed the region-based convolutional neural network technique. 

Faster R-CNN, also known as FRCNN. This is what was made when the Fast R-CNN and region proposal 

network (RPN) algorithms were combined into one network [11]. Melanoma, basal cell carcinoma, actinic 

keratoses, and squamous cell carcinoma are the four primary forms of skin cancer that can result from Ultra 

Violet (UV) radiation exposure. Actinic keratoses, which are precancerous lesions, have the potential to 

progress into malignant skin cancer. Pre-cancerous lesions called actinic keratoses have the potential to 

progress to skin cancer. Bassal cell carcinoma is the most commonly occurring form of skin malignancy. 

Squamous cell carcinoma ranks second in frequency among all skin cancers. Without exception, melanoma 

is the most perilous type of skin malignancy [12]. Experts estimate that the United States will identify 

approximately 5.4 million new cases of skin cancer annually. 

Better chances of survival can result from early identification of skin cancer [13]. Melanoma skin cancer 

affects 1 in 52 women and 1 in 33 men in the US at some point in their lives. About 9,320 Americans lost 

their lives to melanoma skin cancer in 2018. The good news is that, if detected early, melanoma skin cancer 

is very curable. This is the reason it’s critical to have routine skin examinations performed by a physician 

and to be aware of the warning signs and symptoms of melanoma skin cancer [14]. The variable 

characteristics of melanoma skin cancer lesions—color, texture, shape, size, contrast, and location make 

automatic detection difficult. Differentiating between melanoma and non-melanoma lesions may prove 

challenging due to their striking resemblance in appearance. Because early-stage melanoma lesions are 

frequently tiny and have little contrast with the surrounding skin, they might be challenging to find. Lastly, 

melanoma lesions might become even more obscured and challenging to detect due to artifacts such as 

hairs, veins, ruler markings, and color calibration[15]. Some people might not be able to receive a diagnosis 

in a timely manner. A novel approach to diagnosing skin conditions is data-driven diagnostics. This 

analyses skin images using machine learning to identify patterns connected to various skin conditions. This 

is a costly and relatively new technology [16]. When it comes to data and image classification, deep learning 

models outperform conventional techniques. More accurate ease of classification and abnormality 

detection are becoming increasingly necessary in healthcare diagnostics. 

To detect anomalies and categories of illnesses, deep learning models can be applied to the analysis of X-

ray, MRI, CT, PET, ECG, and EEG pictures and data [17]. Among the potential uses for deep learning 

systems is the identification of cutaneous cancer. In terms of both speed and accuracy, deep learning 

systems surpass human physicians in the domain of skin cancer screening. Algorithms capable of machine 

learning may detect characteristics and patterns in skin images that humans fail to notice. This could 

increase the precision of skin cancer diagnosis, resulting in earlier intervention and better results for 

patients. Here, we provide a more comprehensive analysis of each [18]. For the classification of cutaneous 

lesions, researchers have also dabbled in hybrid schemes that integrate deep learning with additional 

machine learning techniques. The utilization of deep learning models to accurately classify skin diseases 

possesses the capacity to fundamentally transform the fields of early detection and treatment [19]. Many 

mobile phone applications have been developed to detect skin cancers. As an alternative to the dermoscopy 

images utilized by dermatology specialists, these applications utilize smartphone camera images. Instead 
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of dermoscopy images, clinical images were utilized to develop a technique for categorization based on 

neural networks [20]. 

The objective of our research is to develop an optimized dermoscopy-image-based classification system 

for skin cancer. EfficientNetB4 is the most advanced model in the analysis of skin pigment lesions, making 

it the principal choice for this research. This model classifies in detail those lesions with the publicly 

available dataset by using different methods of classification. The model was tested on the HAM10000 

dataset, and for seven classes of skin lesions, the classification accuracy achieved was 89.22%. Thus, the 

performance of this proposed model was superior. The findings indicate that the model exhibits a 

commendable performance in classifying skin malignancies. 

Over contribution of this study is that it applied the efficient model EfficientNetB4 and the HAM10000 

dataset to improve efficiency and accuracy in the classification of skin lesions. The research transfers 

learning from a pre-trained Image Net model to make it suitable for a medical imaging application and 

fine-tunes it for its particular domain of interest like pigmented skin lesions. It further employs intricate 

image preparation operations like hair removal and resizing in order to enhance the quality of datasets, 

and further applies techniques of image augmentation to boost the size of a given dataset for smoother 

model training. To open up further research on the perception of skin lesions, the study concludes with a 

comprehensive evaluation of the EfficientNetB4 model performance and benchmarking on the HAM10000 

dataset. 

This paper is organized as follows: Section 1 provides an overview of the skin cancer class prediction 

system; Section 2 summarizes the literature review of previous studies related to skin cancer; In Section 3, 

the data set utilized, procedures of classification, complexities in the skin cancer problem, and 

methodology are explained. In Section 4, we detail the implementation; the performance evaluations of the 

methods are elaborated along with our evaluation criteria in Section 5, while the results and discussions 

are presented in Section 6. Conclusions for further research are given in Section 7. 

 

2. Related Works 

Artificial intelligence has advanced significantly over the last decade, particularly in the areas of deep 

learning and CNNs. Reliable image-based medical surveillance and detection systems are now attainable 

as a result of these developments [21]. Using deep learning, Liu et al. [22] created a novel technique for 

segmenting lesion images. Their technique collects information from the photos at a level that is less 

abstract than the object level but more abstract than the pixel level since it employs a mid-level feature 

representation. They distinguish the various areas of interest (ROIs) in the picture by creating a 

segmentation mask with this information. Pour and Seker [23] segmented lesions and dermoscopic features 

in pictures using a convolutional neural network. They did not, however, employ a pre-trained model or 

heavy augmentation. Rather, they combined the RGB colour channels with the CIELAB colour system. 

Dash et al. [24] presented a novel approach to segmentation using a deep, fully convolutional network with 

29 layers. Xie et al. [25] proposed a technique for segmenting dermoscopy photos utilizing a convolutional 

neural network that incorporates an attention mechanism. This can aid in increasing segmentation 

accuracy, particularly for pictures with intricate edges. Manzo and a team published a method for 

melanoma detection consisting of three stages [26]. The photographs are resized, and the dataset is 

balanced in the initial phase. Step two involves the application of deep transfer learning to extract features. 

In the third phase, we employ a combination of classification algorithms to generate predictions. Table 1 

provides a comparison of a variety of machine learning and deep learning methods for the classification 

and detection of skin lesions, with a focus on models, datasets, performance, and key limitations. 

Table 1. Summary of Tasks, Methodology, Dataset, Performance and Limitations 

References Objective Model 

Tested 

Dataset Model 

Performance 

Limitations/C

omments 

Liu et al. 

[22] 

Goal to create a 

new mid-level 

Feature learning 

approach that 

enhances 

SVM 

classifier 

trained CNN 

models 

ResNet and 

ISIC2017 

dataset, 

consisting of 

2000 photos. 

Model 

execution 

attains cutting-

edge results in 

the 

Restrictions 

include 

reliance on 

pre-trained 

models, which 
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robustness and 

discrimination in 

the identification 

of melanoma and 

other skin lesions. 

DenseNet for 

feature 

extraction. 

Classification 

of skin lesions 

as compared to 

current CNN-

based 

techniques. 

might not 

capture local 

information, 

and 

susceptibility 

to complex 

skin 

conditions. 

Pour and 

Seker [23] 

To create a CNN-

based model that 

is effective at 

segmenting skin 

lesions and 

dermoscopic 

features without 

heavily 

depending on 

preprocessing or 

data 

augmentation. 

CNN uses 

multiscale, 

multi-

direction 

picture 

representatio

ns from the 

transform 

domain and 

15 

convolutiona

l layers in 

the encoder 

section. 

ISIC2016 

and ISIC 

2017 

datasets. 

6% higher 

Jaccard index, 

7% better 

segmentation 

metrics, 17% 

better 

dermoscopic 

feature 

Segmentation. 

Absence of a 

pre-trained 

Model on 

relevant 

medical data; 

lack of a large 

dataset and 

data 

augmentation. 

Dash et al. 

[24] 

Objective to create 

a modified U-Net 

architecture 

(PsLSNet) based 

automated 

psoriasis lesion 

segmentation 

technique for 

Effective lesion 

detection And 

segmentation 

from RGB 

pictures. 

PsLSNet(29 

layers deep 

fully 

convolutiona

l network). 

Dermatologi

sts collected 

a dataset of 

5241 photos 

of psoriasis 

lesions from 

1026 

patients. 

Dice 

coefficient: 

93.03%, 

Accuracy: 

94.80%, 

Sensitivity: 

89.60%, 

Specificity: 

97.60% 

Overfitting to 

training data 

could occur 

from relying 

too much on 

deep learning. 

Xie et al. 

[25] 

To present a skin 

lesion 

segmentation 

approach using 

CNN with an 

attention 

mechanism that 

maintains edge 

details and 

accurately 

recovers skin 

lesion borders in 

dermoscopy 

images. 

CNNs with 

spatial 

attention, 

channel-wise 

attention 

branches, 

and high-

resolution 

feature 

blocks(HRFB

s) 

PH2, 

ISBI2016, 

and 

ISBI2017 

datasets. 

Jaccard 

index:0.783 on 

the ISBI 2016 

dataset,0.858 

on the ISBI 

2017 dataset, 

0.857on the 

PH2 dataset. 

The 

complexity of 

the model is 

due to several 

branches. 

Manzo & 

Pellino  [26] 

The aim of the 

melanoma 

detection model 

framework is to 

SVM, LLP 

&KNN 

PH2 dataset. Competitive or 

superior state-

of-the-art 

methods in 

The difficulty 

of 

computation 

during the 
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enhance 

classification 

through deep 

learning and 

ensemble 

learning. 

melanoma 

detection. 

feature 

extraction 

stage. 

Carolin 

Flosdorf 

[27] 

Goal to increase 

Precision and 

automate skin 

cancer detection 

with Vision 

Transformer(ViT)

models, Especially 

for melanoma, 

theworst type of 

skin cancer. 

Pre-trained 

Vision 

Transformer

s (ViT-L32, 

ViT-L16) 

evaluated 

against less 

sophisticated 

ViT models, 

CNNs, KNN 

classifiers, 

and decision 

tree 

classifiers. 

Not 

mentioned 

ViT-L32: 

Accuracy of 

91.57%, Recall 

Of melanoma: 

58.54%, ViT- 

L16: Melanoma 

Recall: 56.10%, 

Accuracy: 

92.79%. 

Low 

recall(sensitivi

ty) of 

melanoma 

cases(58.54% 

and 56.10%). 

MA 

Rahman 

[28] 

Create an 

accurate, 

autonomous 

model using 

DCNNs to classify 

skin cancer 

(melanoma vs 

non-melanoma). 

Optimized 

NASNet 

Mobile and 

NASNet 

Large. 

2637 skin 

images. 

NASNet Large: 

83.98%

 accurac

y, NASNet 

Mobile: 85.62% 

accuracy. 

Few images of 

aggressive 

tumors; 

reduce 

classification 

accuracy. 

AVP Rajesh 

[29] 

To optimize Deep 

Convolutional 

Neural Networks 

(DCNNs) for the 

Classification of 

Seven different 

kinds of skin 

lesions 

Inception V3 

and 

DenseNet201

. 

HAM10000d

ataset. 

Inception V3: 

Accuracy of 

85.94%, 

DenseNet 201: 

Accuracy of 

87.42%, Ensem- 

ble: accuracy of 

85.94% 

Inception V3’s 

Accuracy is 

matched by 

the Ensemble 

model’s 

performance, 

DenseNet 

201Outperfor

ms it in the 

test set 

Hritwik 

Ghosh [30] 

Improve accuracy 

and correct class 

imbalance in a 

dataset of skin 

disorders by 

utilizing Deep 

Learning (DL) 

capabilities. 

Hybrid 

model pre-

trained on 

the Image 

net dataset 

that 

combines 

VGG16 

andResNet50

. 

3,000 photos 

Covering9 

different 

Skin 

disorders, 

such as 

melanomas 

and 

carcinomas. 

Accuracy:98.75

%, Precision: 

97.60%,Recall: 

97.55%,F1 

Score:97.58% 

Imbalance in 

Model 

performance 

Owida, H.A 

[31] 

The creation of a 

deep learning 

model to 

categorize images 

of multiple skin 

Convolution

al Neural 

Network 

(CNN) 

HAM10000 

dataset. 

Accuracy of the 

model:95.23%, 

Sensitivity: 

95.30%,Specific

ity:95.91% 

Not 

mentioned. 
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diseases in order 

to aid in the 

diagnosis of skin 

cancer. 

Almansi et al. [32] created a novel technique called FrCN for picture segmentation. Being a full-resolution 

convolutional network, FrCN does not require down sampling and can process the entire image at once. 

FrCN is easier to use and faster because it doesn’t require any pre- or post-processing. Serte and Demirel 

[33] introduced a novel deep-learning model specifically designed for the classification of seborrhoeic 

keratosis and melanoma. They developed the model on the basis of a collection of seven convolutional 

neural network (CNN) models incorporating Gabor wavelets. Additionally, the model combines an image-

based CNN model with a Gabor wavelet-based model. The ensemble model outperformed the individual 

models constructed using Gabor wavelets and images. 

Li et al. [1] proposed a technique referred to as digital hair removal (DHS) to eliminate hair from images 

of skin lesions. A deep learning model is employed by DHS to recognize and eliminate hair from pictures. 

The authors found out what effect DHS had by using intra-structural similarity (Intra SSIM) to figure out 

how similar images taken before and after hair removal were. A deep learning system was developed based 

on the Inception V4 architecture [34]. Level II included clinical information, a dermoscopy image, and a 

close-up of the patient’s visage. Level I show cased images exclusively pertaining to dermoscopy. 

Comparing the deep learning system to that of Level I dermatologists, its sensitivity and specificity were 

95%. Level II data shows no change in average specificity but an increase in average sensitivity to 94.1% 

[32]. Among the participants were 16.2% family physicians, 23.1% dermatology residents, and 55.4% board-

certified dermatologists. The researchers discovered that, on average, AI algorithms out performed 

humans in diagnostic tasks by 2.01 points. Researchers have put for a novel approach to identifying skin 

cancer using photos taken with regular cameras. Using a dataset of 463 pictures, the technique produced 

an overall classification accuracy of 76.9% [35]. It has been demonstrated that CNNs are useful for 

categorizing skin conditions. CNNs all performed better than dermatologists, improving by an average of 

11%. The top-performing CNN was Dense Net 201, which had an overall classification AUC of 98.16%.10,135 

dermoscopy skin pictures were included in the dataset utilized for the study [36]. The classification of skin 

lesions on the HAM 10000 dataset was suggested utilizing an individual Inception-v4 model. The model 

achieved a precision rate of 94.7%on the verified ISIC 2018 benchmark test. By utilizing lengthy residual 

connections for feature reuse, the model was improved [37]. 

A novel deep-learning algorithm is capable of automatically classifying seven distinct types of cutaneous 

lesions. The system demonstrated an accuracy of 93%, 97%, and 91%, respectively, in the highest-1, highest-

2, and highest-3 rankings. We utilized the HAM 10000 dataset, which comprised over 10,000 images of skin 

lesions, to train the algorithm [38]. Zhang et al. [39] came up with attention-based residual learning as a 

way to sort skin lesions into groups, especially nevus, seborrhoeic keratosis, and melanoma. The attention-

based layers in this strategy are modeled after the last levels of the ResNet deep learning model. 

Researchers implemented a deep learning system to facilitate the classification and segmentation of lesions. 

Three datasets (PH2, ISBI2016, and ISIC2017) were utilized to evaluate the proposed method by the 

researchers. Khan et al.[21] claim that the proposed framework has the potential to attain the following 

metrics: F1-score of 86.28%, accuracy of 86.5%, sensitivity of 85.57%, and precision of 87.01%. Skin Trans 

was trained utilizing a clinical dataset and the HAM10000 dataset, which is associated with skin cancer. 

Xin et al. [40] reported that the model demonstrated an accuracy of 94.1% on the clinical dataset and 94.3% 

on the HAM10000 dataset. Four distinct skin cancer imaging datasets were utilized to assess the ACO-KSELM 

model: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. The accuracy of predictions made by the ACO-

KSELM model on the datasets citeliu 2023 aco was 98.5%, 98.6%, 97-9.9%, and 98.5%, respectively [41]. Six 

publicly accessible databases of skin lesions were utilized by Menegola et al. [42] to train two deep learning 

models: Google Inception-v4 and Deep ResNet-101.They set out to determine whether integrating these 

databases could enhance the accuracy of lesion categorization. Deep learning techniques employ a variety 

of deep neural network architectures to categorize skin cancer as malignant or benign. Numerous datasets 

have been used to assess these techniques, including HAM10000, ISIC 2019, and ISIC 2020. The techniques 

have produced results with great accuracy [43], with some reaching up to 94.00% accuracy. 

In this study, we use EfficientNetB4 to outperform models like Inception-v4 and DenseNet-201 in terms 
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of accuracy and computing efficiency. Lesion visibility and noise reduction are both improved by our 

improved preprocessing methods, which include optimized hair removal and picture augmentation. 

Furthermore, we apply a fine-tuned transfer learning technique and the Adamax optimizer to achieve 

improved accuracy and sensitivity on larger datasets than in earlier studies. 

 

3. Methodology 

This section covers the methodology and distribution of the HAM10000 dataset for testing, validation, 

and training. 

3.1. HAM10000Dataset 

We evaluated the technique by utilizing the standard HAM10000 collection. The HAM10000dataset is 

used to teach neural networks to automatically detect skin lesions with pigment in the absence of sufficient 

dermatoscopic images. The dataset contains 10015 pictures show casing all types of pigmented lesions 

suitable for diagnosis as shown in Table 2. Vascular lesions, actinic keratoses, basal cell carcinoma, 

dermatofibroma, melanoma, melanocytic nevi, benign keratosis-like lesions, and intraepithelial carcinoma 

are all in this group. Histopathological examination validates more than 50% of the cases. In order to 

validate the remaining instances, subsequent examinations or in vivo confocal microscopy is required. A 

variety of lesion images are included in the dataset. You may record them in the lesion ID column of the 

HAM10000 metadata file [44]. 

3.2. Dataset distribution 

Dermatoscopic images of skin lesions make up a sizable portion of the HAM10000 dataset. Ten thousand 

fifteen images hailing from seven different categories (AKIEC, BCC, BKL, DF, MEL, NV, and VASC) make 

up the collection. Testing, validation, and training are the three parts of the dataset that we divided. We 

checked the validation and testing collections for duplicate photos. It uses 8012 training photographs, 1001 

validation images, and 1002 testing photos. 

Table 2. Classes of the HAM10000 dataset’s distribution 

Classification of Diagnostics Number of Pictures Percentage 

AKIEC 327 3.27% 

BCC 514 5.13% 

BKL 1099 10.97% 

DF 115 1.15% 

MEL 1113 11.11% 

NV 6705 66.95% 

VASC 142 1.42% 

The HAM10000 dataset was divided into three sections: 80% training, 10% validation, and 10% testing. 

It uses 1001 validation photos, 8012 training images, and 1002 test images. The testing set facilitated 

evaluating the performance of our trained models. We ensured that each image contained a variety of 

testing and validation sets. Table 3 displays three sets of class-wise distributions from the HAM10000 

dataset. 

Table 3. Dataset distribution in Training, Validation, and Testing Set 

Class Name Train Set Validation Set Testing Set Total 

NV 5364 670 671 6705 

MEL 890 111 112 1113 

BKL 879 110 110 1099 

BCC 411 51 52 514 

AKIEC 262 33 32 327 

VASC 114 14 14 142 

DF 92 12 11 115 

3.3. Image Preprocessing 

The HAM10000 dataset resized the images, originally measuring 600×450 pixels, to meet the input 

specifications of the EfficientNet [45] model used for training as shown in Figure 1. Hair is irrelevant to our 

objective of categorizing skin cancer classes because the HAM10000 dataset only includes photos of 
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pigmented skin lesions. CNN will have to learn to ignore the random fur strands since they are unrelated 

to our mission. To make accurate forecasts, CNN will need to learn to differentiate between the skin lesion 

and the fur. Inaccurate predictions may result from the CNN model learning to correlate the image’s noise 

with the intended class. CNN will have to learn to ignore the noise if it is not eliminated from the images, 

which can be a laborious and costly operation in terms of processing. CNN might not be able to learn to 

ignore the noise in some situations, which could result in subpar performance. 

 
Figure 1. Skin Cancer Lesions Images after Preprocessing [44] 

By using picture augmentation, the size of the dataset was expanded, overcoming the difficulty of 

obtaining large-scale labeled data for neural net training in the medical field a costly and skilled endeavor 

requiring a medical practitioner. As previously demonstrated, this procedure is significant in the 

evaluation of cutaneous lesions. Rotating, zooming, and flipping the dataset both horizontally and 

vertically allowed us to adjust its size. We describe the preparation picture pipeline that was created in this 

section, which improves the dataset, eliminates hairs from images, and resizes images in compliance with 

EfficientNetB4’s specifications. 

3.4. Framework for EfficientNet Model 

Scaled-up convolutional neural networks (CNNs) enhance precision. However, researchers had not 

comprehensively examined the scaling procedure. Some ways that the iterative human modification 

needed for the scaling technique was done by randomly increasing the CNN’s depth or breadth, using a 

higher input image resolution, or doing both. At the moment, the founder of the EfficientNet architecture 

family is looking into a good way to scale convolutional neural networks (CNNs) in order to improve the 

parameters of the systems and the models’ effectiveness, precision, and efficiency. 

 
Figure 2. High level architecture diagram of a deep learning model [45] 

EfficientNetB4 takes a 380×380 image as input and consists of 19 million parameters. By adjusting the 
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network depth, CNNs are capable of capturing more intricate and varied attributes. On the contrary, the 

issue of vanishing gradients introduces increased complexity into the process of training networks. The 

network can gather a greater number of fine-grained attributes by adjusting its breadth. Likewise, training 

is a pleasure. Conversely, broad and sparse networks lack the capability to capture features at a higher 

level. Lastly, higher-resolution images facilitate the ability of CNNs to discern more subtle patterns. 

Processing larger images necessitates increased processing capacity and memory. We utilized the 

HAM10000 dataset to assess the EfficientNetB4 model in our research. Figure 2 shows the high level 

architecture diagram of a deep learning model. 

3.5. Transfer Learning 

Domain adaptability and transfer learning are interchangeable terms, that leverages knowledge acquired 

in one field to accomplish related tasks. We utilized the knowledge gained from training models using the 

Image Net dataset to accomplish our objective. In contrast, by employing a medical image dataset that 

comprises darkened lesions of the skin, our approach evaluates EfficientNet models. Because the pictures 

in the dataset include such a wide range of topics, we can’t assume top performance when we immediately 

use pre-trained weights for inference. 

`Consequently, we adjusted the method. At this stage, we modify the trained model parameters precisely 

to account for the novel domain of the images. There are an abundance of methods for fine-tuning. You 

can improve the features that specialized classifiers (like support vector machines for classification) use in 

two ways: by optimizing the parameters in the last few layers of the pre-trained model or by using the 

models themselves to pull out fixed features. 

 

4. Implementation 

This section provides implementation and training details for EfficientNetB4 to ensure reproducibility. 

4.1. Range of Learning Rate 

The learning rate is a critical hyperparameter that significantly influences the dependability and efficacy 

of neural network training. By implementing these techniques, we were capable of ascertaining the optimal 

learning rate limitations (specifically for a given dataset and model). 

In order to accomplish this, we raised the rate of learning of each network linearly within a specified 

range of values following a few training epochs. The range of values 0.0001 to 0.01 is where the model 

trains most effectively; beyond this range, there is a significant validation loss. Successful model training 

takes place between values 0.0001 and 0.01; outside of this range, there is a significant validation loss. For 

the model, we used early stopping. We implemented the model on Kaggle using Keras, which has a 16 GB 

GPU P100, and TensorFlow as the backend. 

4.2. Fine Tuning B4 

Researchers designed the HAM10000 dataset specifically for medical imaging. Due to the substantial 

disparity in distributions between the two datasets, it was necessary to make adjustments to each 

convolutional layer. To optimize this model, we employed a stochastic gradient descent (SGD) that 

incorporates learning rate decay. A learning rate of 0.0005 was employed by the Adamax optimizer instead 

of SGD as shown in Table 4. There was a significant performance and stability gap between the SGD 

method and the Adamax optimizer during training. 

Table 4. Model Specific Modification 

Model Image Size Batch Size Learning Rate Optimizer 

EfficientNetB4 380×380 8 0.00050 Adamax 

 

5. Performance Evaluation Metrics 

These tests are used to rate how well each model works. These tests include confusion matrices, F1 scores, 

specificity, and accuracy. Measuring how well a classification model works does not rely on set rules. A 

common set of speed metrics has been written about, which are based on what the user wants. The following 

metrics precision, recall, accuracy, F1 score, specificity, and confusion matrices become extremely useful 

when there is no ambiguity between the classes. 

5.1. Confusion Matrix 

We constructed an NxN table to summarize the accuracy of predictions generated by a classification 

model, where N represents the number of classes. The matrix illustrates the correlation between the 
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expected label of the model and the actual label. The confusion matrices generate four distinct categories. 

When the model predicts the positive category of an image with precision, it generates a true positive (TP). 

A false positive (FP) occurs when the model erroneously classifies an image as positive. A model accurately 

classifying the negative aspect of an image is referred to as a ”true negative” (TN). A false negative (FN) 

occurs when a model erroneously predicts a negative class. When confronted with a problem involving 

multiple classes, the model will designate the positive class using the computation label and the negative 

class using the remaining label [46]. 

5.2. Accuracy 

To assess performance, we utilize the proportion of accurately predicted picture classes in relation to the 

total number of photographs. No simpler method exists for assessing performance than this. The class 

distribution is symmetrical when the number of photographs (or observations) in each class is nearly 

equivalent; this is the sole circumstance under which this statement remains valid. EfficientNetB4 

demonstrates its accuracy in the Top-1, Top-2, and Top-3 categories [47]. The model meets the top-1 

accuracy condition when its predicted class precisely matches the actual or expected class. A model is 

considered accurate in terms of top-k accuracy when each of its initial k probabilistic predictions matches 

the true picture class [46]. Table 6 shows the Class wise Precision, Recall, F1Score, Specificity and Support. 

Accuracy = True predictions / Total predictions                                                               (1) 

5.3. Precision 

To determine precision, the model divides the total number of positively categorized photographs by the 

number of correctly identified photos in the positive class [48].The ratio of true positives to the sum of true 

positives and false positives represents the formula for precision [46]. 

Precision = True Positives/ (True Positives + False Positives)                                         (2) 

5.4. Recall 

The model computes recall statistics by accurately identifying the proportion of true positives. Divide the 

total count of positive photographs by the count of authentic positives in order to obtain the outcome [49]. 

Recall = True Positives/ (True Positives +False Negative)                                               (3) 

5.5. F1 Score 

Based on what we know about recall and precision, it appears that the two metrics are compromised     in 

some way. Precision decreases when recall is increased, and vice versa [50]. Our need to prioritize one over 

the other may vary depending on the application domain and user requirements. However, if you assign 

varying weights to each parameter, the F Beta Score can be utilized to achieve a compromise. Zhong [51] 

explains that the F Beta Score computes the arithmetic mean of the weighted harmonic means of recall and 

precision. The beta factor assigns greater weight to recall compared to precision. In this context, recall and 

precision hold equivalent significance. Consequently, the F1 score equals beta = 1. The F1 grade is calculated 

by averaging precision and recall. An increase in the F1 score indicates an improvement in predictive 

capability [52]. In order to comprehensively evaluate the model’s performance in a multiclass categorization 

task, the F1 score was computed for each class, as illustrated in the subsequent statement. Remember that 

F1 Score results do not fall under the category of recall or precision [46]. 

F1= (2*Precision*Recall)/ (Precision + Recall)                                                                 (4) 

5.6. Specificity 

Researchers quantify the accuracy of the model’s classification of authentic negative situations using its 

specificity [53]. Specificity is defined as the ratio of total TN to specificity (FP) posits that an increase in TN 

value and a decrease in FP value are indicative of enhanced specificity [46]. 

Specificity = (True Negative/False Positive+ True Negative)                                                  (5) 

 

6. Results and Discussion 

Table 5 presents the accuracy results of EfficientNetB4 on the HAM10000 dataset, including its Top-1, 

Top-2, and Top-3 rankings. 

Table 5. Conclusions drawn from the accuracy evaluations of EfficientNetB4 

Model Top-1Accuracy Top-2Accuracy Top-3Accuracy 

EfficientNetB4 89.22% 88.82% 88.62% 
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Figure 3. Training and validation loss and accuracy 

The best epoch is the one with the lowest validation loss. In Figure 3, the optimal epoch is 21. This means 

that the model scored best on the validation set at the end of the 21st epoch of training. The training and 

validation accuracy curves follow a similar pattern as the training and validation loss curves. The training 

accuracy measures how well the model predicts the proper labels for the training data. The validation 

accuracy indicates how effectively the model predicts the correct labels for the validation data. In summary, 

the graphs illustrate that the model is training properly and not overfitting       the training data. 

Table 6. Class wise Precision, Recall, F1Score, Specificity and Support 

Classes Precision Recall F1-Score Support 

AKIEC 0.88 0.66 0.75 32 

BCC 0.80 0.94 0.87 52 

BKL 0.79 0.88 0.83 110 

DF 0.62 0.91 0.74 11 

MEL 0.76 0.75 0.75 112 

NV 0.96 0.93 0.94 671 

VASC 0.67 0.71 0.69 14 

Accuracy       NULL     NULL 0.89 1002 

Macro Avg 0.78 0.83 0.80 1002 

Weighted Avg 0.90 0.89 0.89 1002 

As described in the Dataset Section, the HAM10000 dataset exhibits a significant class imbalance, also 

known as a highly asymmetric class distribution. Both the magnitude of the dataset and the intricacy of the 

model provide support for the observed pattern in performance. More advanced models have a higher 

chance of producing superior performance metrics. On the other hand, they are also more likely to overfit 

the dataset. Both the magnitude of the dataset and the intricacy of the model provide support for the 

observed pattern in performance. More advanced models have a higher chance of producing superior 

performance metrics. On the other hand, they are also more likely to overfit the dataset. At the same time, 

they have a higher tendency to overfit the dataset. The predictability of the observed middle-level 

complexity model’s (EfficientNetB4) impressive performance is not unexpected. Reduced-complexity 

models, such as EfficientNet B0-B3, exhibit diminished discriminatory capability. Not with standing, the 

more complex models of EfficientNet B6-B7 overfit our dataset. 

 
Figure 4. Class wise errors on test dataset 
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Figure 4 shows that model produced the fewest errors in VASC class. Our model made the most errors 

in NV class, indicating a major challenge in correctly classifying data from this category. MEL, DF, BKL, 

BCC, and AKIEC: The frequency of errors in these classes ranges from VASC to NV, with varying degrees 

of accuracy. Overall, the graph shows that the model is performing well in certain classes but not in others. 

 
Figure 5. ConfusionmatrixofEfficientNetB4 

The confusion matrix as shown in Figure 5 illustrates the effectiveness of a skin disease predictor on an 

image dataset. The matrix presents the expected picture classes in the columns and the actual picture 

classes in the rows. By displaying the number of accurately classified photographs along the diagonal of 

the matrix. For instance, the matrix’s first row and first column’s cell display that 21 pictures of actinic 

keratoses, or AKIECs, were correctly identified as such. In the cell located in the first column and second 

row, the classifier mistakenly identified three BCC (basal cell carcinoma) photos as AKIEC. The confusion 

matrix helps determine the advantages and disadvantages of a classifier. For instance, the classifier in this 

case does exceptionally well in recognizing melanoma and AKIEC but struggles a little bit in classifying 

BCC and BKL (Benign Keratosis-like Lesions). 

Table 7. Comparative study of the HAM10000 dataset 

Reference Preprocessing Image type Number of Classes Methods Accuracy 

Nugroho et al. 

[54] 

YES RGB 7 CNN 78% 

Bassi et al. [55] YES RGB 7 CNN-transfer learning 82.8% 

Moldovan et al. 

[56] 

YES RGB 7 CNN-transfer learning 85% 

C¸eviket al. [57] YES RGB 7 CNN 85.62% 

Karar et al. [58] YES RGB 7 CNN-transfer learning 87.9% 

Our Proposed 

EfficientNetB4 

YES RGB 7 CNN-transfer learning 89.22% 

Each individual utilized the HAM10000 dataset. Nugroho et al.[54] achieved an accuracy level of 82.8%, 

while Bassi et al. [55] achieved 78 percent accuracy. In contrast, the accuracy of C¸ evik et al. [57] and 

Moldovan et al. [56] was 87.9%, 85.62%, and 85.5%, respectively. This comparison shown in Table 7 

indicates that our suggested approach performs better than the multiclass skin cancer classification 
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methods currently in use. 

 

7. Conclusion 

When considering both the incidence and severity of cancers, skin cancer ranks highly. Generally, an 

examination of the eyes is required for dermatologists to diagnose this condition. The task of multi - class 

skin cancer categorization presents a significant challenge, as evidenced by the minor distinctions that 

exist among the different diagnostic categories. Recent trials, however, demonstrated that CNNs 

outperformed humans in several skin cancer classification categories. The dataset was optimized by 

removing undesired hairs, resizing the photographs to ensure compatibility with all models, and 

cropping out undesirable hairs. Following that, EfficientNetB4 was trained on the HAM10000 dataset 

utilizing a pre-treatment picture system and pre-trained Image Net weights. We used precision, recall, 

accuracy, F1 score, and confusion matrices to compare how well all versions of EfficientNet did on this 

unbalanced multiclass classification problem. This was done to see what effect transfer learning and fine-

tuning had. The paper provides confusion matrices that exhibit the classification scores for each class for 

all eight models. The accuracy rate of our most dependable model, EfficientNetB4, was 89.22%. We 

evaluated the performance of EfficientNetB4 using the HAM10000 dataset and the skin cancer 

classification task. The parameters accounted for the margin of error in our evaluation criteria for 

EfficientNet classifiers. The most favourable outcomes were achieved by employing models of moderate 

complexity, such as EfficientNetB4. In conclusion, confusion matrices illustrated the variable degrees of 

generalizability among distinct skin cancers. Utilizing models that were originally designed for specific 

forms of cancer may still yield improved outcomes. Further development would be oversampling or 

synthetic data generation for even more class-balancing techniques to improve performance over 

underrepresented classes. More medical data, including images and clinical data, will probably increase 

the overall diagnostic accuracy. 
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