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Abstract: Natural Language Processing (NLP) increasingly relies on machine learning to make 

better predictions of sequential text. This work focuses on the application of Long Short-Term 

Memory Networks, a variant of Recurrent Neural Networks that is specialized for modeling long-

term dependencies. Traditional RNNs leave much to be desired in predicting sequences that contain 

repeated patterns or contextual dependencies. The research uses “The Adventures of Sherlock 

Holmes” as the training dataset and applies TensorFlow and Keras frameworks for implementation. 

The major preprocessing steps included word tokenization, n-gram creation, and one-hot encoding 

to prepare the dataset for modeling. The LSTM model was trained over 100 epochs to optimize 

prediction capabilities. Through this work, we show that LSTM is effective in next-word prediction 

and can potentially improve the performance and practicality of language models for real-world 

applications. The model achieved a commendable accuracy of 87.6%, demonstrating its effectiveness. 
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1. Introduction 

Natural Language Processing (NLP) is a vital part of AI, focusing on how computers and humans 

communicate using natural language. Machine learning (ML) algorithms require training data to develop 

models that can make predictions and decisions without needing explicit programming. Deep Learning 

(DL), a subset of ML, utilizes artificial neurons for computation. This approach helps computers 

understand, interpret, and generate meaningful language. A fundamental task in NLP is next-word 

prediction, which determines the word that should follow another in a sentence. This capability is essential 

for various applications, including text generation, translation, and smart auto-completion.  

 

Figure 1. Tools and Techniques for Next Word Prediction. 

Next-word prediction plays a significant role in enhancing user experience across multiple 

applications. It is crucial for text messaging apps, search engines, and writing assistants like Google 
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Assistant, which millions of smartphone users trust. By predicting the next word, these systems help users 

type faster and with fewer mistakes, improving communication efficiency and clarity. NLP facilitates 

smooth interactions between computers and humans using everyday language. Moreover, predicting 

subsequent words is a key element of complex language models used in machine translation and emotion 

recognition. The machine-learning techniques found in NLTK libraries are also essential in this context. 

Creating accurate next-word prediction systems is instrumental when it comes to enhancing the 

efficiency and dependability levels of all these programs, hence rendering them handier and more 

applicable under different conditions. 

This research studies to boost the precision of predicting the subsequent word in a sentence based on 

the LSTM model. Specific objectives of the study include: 

• To develop a model bearing on Long Short Term Memory and use it to predict the next word. 

• To evaluate the enormous and varied text dataset used for the model training. It assesses how well the 

model performs by comparing it to other methods. 

• To determine the weaknesses and advantages of the LSTM model in the framework of next-word 

prediction. 

Sections of the paper are organized to each cover a different research area. The following is the way it 

is laid out. Introduction: Provides an overview of previous research in the field, explaining the importance 

of next-word prediction and its relevance to advancing language modeling. It also outlines the current state 

of language modeling and sets the stage for what this paper aims to achieve. Literature Review: Covers the 

foundations of NLP, summarizing recent research studies. It highlights various techniques and tools for 

similar purposes and includes a detailed literature table to compare prior work. Research Design and 

Methods: Describes the study’s approach, including details about the dataset, preprocessing steps, model 

development, and configurations used. Results and Discussions: Present the findings through performance 

metrics, accuracy and loss graphs, a confusion matrix, and a classification report. It also compares the 

proposed model's performance with existing methods. Conclusion and Future Work: Summarizes the 

study's key findings, explaining why the model outperforms others. It also discusses limitations and offers 

suggestions for future research directions. 

 

2. Literature Review 

Ganai et al. [1] in this paper based on Long Short-Term Memory (LSTM) cells and Recurrent Neural 

Networks (RNN) can be used to forecast the next word in a sequence, an indispensable component of 

Natural Language Processing (NLP) in general. Researchers examine how to structure information 

retrieval systems by introducing a tree-based generative modeler that combines RNNs and LSTMs. A 

different document shows the creation of an LSTM model intended to predict the next words in Assamese 

text. The linguistic properties of Assamese that make it unique are described by the model; it outperforms 

other RNNs. This article shows that this proposed model has better predictive power for Assamese texts 

than those featured in this. This paper reached accuracy levels of 72.10% in proper noun detection tasks 

but 88.20% for Assamese text prediction, with the same number of words and HTML elements as above. 

Another paper [2] studies how AWD-LSTM model usage when combined with human eye tracking 

metrics, assists in an improved understanding of word prediction mechanisms as well as human reading 

kinetics. This research further strives to realize how these models imitate human predictability as well as 

gaze duration, thereby improving our knowledge of language processing and interpretability of these 

models. Although LSTM models tend to approximate specific human text-processing elements, 

controversies encourage model performance improvement and alignment with human[3] cognitive 

processes. Eisapeet al. [4], the authors describe a technique called Cloze Distillation that instructs a neural 

language model to imitate human understanding to close the gap between it and actual human-like 

comprehension. An experiment proved that Cloze Distillation successfully reduced the gap between the 

model's expectations and those of natural speakers, which means they are more alike than before. 

Tessema et al. [5] present the attention shifts to the creation of a system that will predict the following 

word in one of the most challenging languages. This paper demonstrates that bi-directional LSTM and 

various Hyperparameters can significantly improve accuracy. The approach identified the optimal model 

setup through deliberate tests that glorify its worthiness in forecasting the subsequent Amharic words. In 
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a paper by Luukkonen et al. [6], the writer of this paper has brought about a proactive information retrieval 

method using LSTM NETWORKS for predicting text inputs. LSTM models have an advantage with this 

technique because it shows what they are capable of in terms of improving information retrieval that can 

go beyond what other methods would achieve in exploratory search tasks when related extra details from 

the preceding interactions user's behavior towards ongoing conversation are used which increases the level 

of accuracy in these types of tasks. 

Building a language model with LSTM networks is possible thanks to the paper [7], thus highlighting 

the lack of research on the Bodhi language. However, they claim that their model is very important to 

safeguard the Bodhi language when it is difficult to access linguistic research and resources. In this paper, 

we have presented how dataset preparation and training have been done, and it has been very accurate 

when predicting what follows after certain words in Bodhi texts. 

Traditional convolutional neural networks (CNNs), as discussed in [8], face limitations when 

processing text, particularly in capturing temporal associations between words appearing at different 

points in time. However, by incorporating techniques like dropout alongside addressing these challenges 

in pattern recognition, we have been able to create models with improved generalization capabilities, 

surpassing those reliant on gating mechanisms. This approach has made it significantly easier to handle 

words with complex dependencies. The model effectively integrates the contextual information of 

individual words within a sentence, resulting in a richer and more comprehensive contextual 

representation. 

A journal article by [9] introduces Bio-Pred, an AI algorithm designed[10] to predict words in the 

English language by drawing inspiration from how the human brain works, using biological principles in 

robotics. Bio-Pred stands out because it does not just simulate AI behavior but mimics human thinking. It 

combines bi-directional connectionist structures with self-learning mechanisms, enabling it to adapt and 

improve over time. Similarly, Rosa et al. [11] explore how personality profiling can be integrated into 

predictive text models. Their research focuses on using the five major personality traits identified through 

Twitter data to predict words [6-9, 11-18] based on a user's tweet. It is achieved through Markov models, 

which provide predictions grounded in personality insights. Our primary goal is to enhance the 

performance of predictive text models, making them more accurate, adaptive, and user-focused. We aim 

to create a more engaging and intuitive text prediction experience by tailoring these models to better 

understand and interact with users. 

Table 1. Literature Review. 

Authors  and 

Reference 
Model Used 

Model 

Accuracy 
Dataset Used Limitations 

Ganai et al. [1] 
RNN and 

LSTM cells 

Around 

46% after 

20 epochs 

Twenty popular 

books from Project 

Gutenberg 

Long training times needed 

for large labeled data 

suggest exploring sub-word 

and corpus-level modeling 

[1] [11] 

Barman et al. [2] 
LSTM, a type 

of RNN 

88.20% 

Assamese 

text, 

72.10% 

phoneticall

y 

transcripte

d 

Assamese 

language 

Transcripted 

Assamese 

language 

according to the 

IPA chart 

Focus on the Assamese 

language limits 

applicability to others and 

challenges in modeling 

linguistic nuances [2][12] 

Umfurer et al. [3]   

AWD-LSTM 

Language 

Model 

Not 

explicitly 

stated 

Corpus of short 

stories with Gaze 

Duration 

Predictability 

A challenge in 

understanding LSTM 

models and human 

cognitive processes 
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metrics, Spanish 

Wikipedia 

suggests further research 

[3][13] 

Eisape et al. [4] 

LSTM, 

Transformers 

(XLNet, GPT-

2, 

Transformer-

XL), 5-gram 

model 

Not 

specified 

Provo Corpus for 

cloze completion 

and reading time 

data 

LSTM's performance in 

next-word prediction does 

not necessarily translate to 

superior reading time 

prediction [4][14] 

Tessema et al. [5] Bi-LSTM 

The 

precision of 

91.02% on 

training, 

90% on 

testing 

Amharic language 

text designed for 

the study 

Challenges related to 

Amharic's morphological 

richness, absence of human-

engineered linguistic 

features [5][15] 

Luukkonen et al. 

[6] 

LSTM 

Network 

Not 

provided 

Abstracts from the 

Computer Science 

branch of the 

arXiv database 

Effectiveness varies by 

search task; further 

exploration of query 

expansion methods is 

needed [6][16] 

Kumar et al. [7] 
LSTM based 

on RNN 

70% for 

English, 

50% for 

Bodhi after 

specific 

training 

iterations 

Collection of 

Bodhi words from 

Ladakhi articles, 

newspapers, and 

dictionaries 

Preprocessing and training 

challenges due to Bodhi's 

complexity expected 

improvement with more 

data   [7][17] 

Yang et al. [8] 

MCNN-

ReMGU 

model 

Performanc

e 

improveme

nts 

discussed 

Penn Treebank 

and WikiText-2 

datasets 

Complexity and 

computational resource 

requirements could be 

inferred challenges. 

Elbaghazaoui et 

al. [9] 

Markov 

Chain Model 

Not 

explicitly 

mentioned 

Tweets for 

profiling 

personality traits 

using the Big Five  

The conceptual approach 

discussed without detailing 

specific limitations or 

model accuracy 

Rosa et al. [10] 

Bio-Pred, a 

biologically 

inspired 

connectionist 

model 

Not 

specified 

Not explicitly 

mentioned 

Focuses on biological 

motivation and 

architectural innovations 

without detailing specific 

limitations 

 

3. Materials and Methods  

Figure 2 presents the LSTM-based Proposed Model for Next Word Prediction. It shows the steps that 

were taken to get the desired results. The first step comprises collecting textual data, which is then 

tokenized using the tokenizer. These tokens are used to make the n-grams, which help to understand the 

context of the text, and then, these are one-hot encoded to convert textual data into numerical or vector 

form, which is then passed through LSTM, which provides us with the desired results[19]. 

3.1. Dataset 

The present study utilizes data from a revered piece of literature: The Adventures of Sherlock Holmes 

contains twelve short stories for which it is famous. These stories are best known for their protagonist, 

Sherlock Holmes, a fictional detective always accompanied by his associate, Dr. John Watson. One of the 

most popular and widely read books in the Sherlock Holmes collection has been published since 1892 and 
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up to the present day. It was written in episodes in the strand magazine, but they were combined into one 

book, eventually containing 105,000 words, each marked by the letter'/n' [20]. 

 
Figure 2. LSTM-based Proposed Model for Next Word Prediction. 

3.2. Method 

There are several steps involved in this process, such as text preprocessing, model definition, and 

training.  

3.2.1. Preprocessing Steps: 

1. Text Cleaning and Removal of Special Characters: 

Purpose: Cleaning of text will finally ensure the text data is prepared for machine learning or NLP 

tasks. Raw data is often messy from the datasets as it contains accentuating details such as punctuation, 

numbers, special characters, and stopwords, all of which could easily confuse a machine while learning 

meaningful elements. Once done, the removal of the irrelevance will give the model a broad view of its 

actual contents, which are words and phrases that add some meaning to the model. The process is very 

crucial in reducing noise, which usually misleads or complicates training for the model. Clean text becomes 

interpretable for the model to ensure effective and efficient learning later on. For instance, in analyzing a 

book, irrelevant clutter like repetitious filler words or page numbers allows the analyst to concentrate on 

the main narrative while leaving out irrelevant details. 

Implementation: A custom function was created to clean the text using regular expressions and strong 

tools to match patterns. The function is to be designed to detect and remove all the non-alphanumeric 

characters such as punctuation marks (e.g., "!", "?"), digits (e.g., "123"), and special symbols (e.g., "@", "#"). 

After this step, the text was stripped down to its basic components: words. The other extraneous characters 

were removed, and the function also filtered out stopwords. Stopwords are common words like "the," "is," 

"and," and "of" that occur frequently in text but do not carry substantial meaning on their own. For example, 

in the sentence "The cat is sitting on the mat," the removal of stopwords such as "the" and "is" leaves behind 

the more meaningful content words: "cat sitting mat." This enables the model to focus on the heart of the 

sentence rather than being swayed by redundant or frequently occurring terms. The function is flexible 

and can be adapted to specific datasets. For instance, if working on domain-specific text For example, if 

the data consists of legal documents or medical records, we can customize the stopwords list or the 

cleaning process to retain particularly important terms for that domain. 

Role: Text cleaning is the strongest foundation of the machine learning pipeline. Feeding raw, 

unprocessed text to a model can seriously impede its ability to learn patterns and relationships in the data. 

Unwanted characters, digits, and stopwords make for distractions as they generate noise that should dilute 

the signal of meaningful information in the text. Take punctuation marks or some irrelevant symbols, 

which do not carry any meaning for what a sentence really wants to say. Removing these will ensure that 

the model is not bogged down by details irrelevant to its goal. Also, Stopword removal enhances the focus 

of the model on content words that carry the bulk of semantic meaning in a sentence. Doing so improves 

the quality of the data the model uses for learning. This way, the model can build its meaningful 

understanding of the patterns and becomes more capable of performing tasks like sentiment analysis, text 
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classification, or language generation. Without cleaning, the model will waste computational resources in 

trying to make sense of the noise, thus leading to bad performance or overfitting. 

2. Word Tokenization: 

Purpose: A computer model had to decompose text into the smallest pieces called tokens before it 

could operate with text. These tokens primarily included a word or a phrase. For every token, a unique 

number was given, forming a list of all the words in the text, which is called a vocabulary. The machine 

processed and learned from the text by converting words into numbers. Tokenization is a means to 

translate from a human-readable into a machine-convertible format; in this regard, for the phrase "Machine 

learning is fun, tokenization enabled word breaking so as to process those more efficiently. 

Implementation: Here, to tokenize any text, they would split all the sentences that are given into their 

words at different spaces or by punctuation. That is, instead of "AI is transforming the world," separate 

tokens were divided: "AI," "is," "transforming," "the," and "world." Then, each token is assigned a numerical 

value that represents it in vocab. Libraries, particularly NLTK and SpaCy, were used to facilitate this 

process. 

Role: Tokenization is the most significant step that turns raw text into numbers, making it easier for 

the model to read and understand. In the absence of tokenization, it would not be possible for the model 

to interpret and learn from the text data. This step was vital in making sure that the machine saw the text 

in a structured form. For instance, the tokenization helped the model understand that "AI" and "world" 

were two words separate from each other. 

Impact: Good tokenization improved how the model learned and performed. This ensured that every 

unique word within the text was captured clearly, meaning the model does not focus much on the words 

but rather on the pattern and context of the data. The proper tokenization reduces unnecessary text 

complexity, which enables the model to process faster. For instance, by tokenizing a sentence into words 

such as "great" or "bad," the model was able to understand sentiments much better. It also allowed the 

model to make accurate predictions by only focusing on meaningful parts of the text, which improved 

efficiency and performance in general. 

In summary, tokenization was a key step in preparing text for a model. It broke down text into 

manageable pieces, simplified the data, and helped the model learn patterns effectively, resulting in better 

accuracy and predictions. 

3. N-grams Creation: 

Purpose: N-grams are sequences of 'n' items, for example, words or characters that play a vital role in 

understanding the structure and flow of text. An N-gram determines the next word or character from the 

preceding sequence of words or characters. Thus, it captures the context of the text and explains the 

patterns and relationships in its deeper usage. For example, in the phrase "artificial intelligence is," the 

following logical word might be "revolutionary" or "developing," depending on the context provided by 

the N-grams. 

Implementation: N-grams are used, and the text is segmented into sentences first. Then, the sentences 

are further divided into overlapping sequences of words, where each sequence represents an N-gram. For 

example, in the sentence "Machine learning is powerful [21]," a trigram model (n=3) would generate the 

sequences "Machine learning is" and "learning is powerful." These sequences are fed into the model so that 

it learns the connections between words and how they form meaningful phrases. Libraries like NLTK or 

SpaCy can be used to generate these N-grams efficiently, making them a foundational step in preparing 

the data for training. 

Role: N-grams provided a clear understanding of the model of word relationships within a sequence. 

The model gained contextual knowledge of language structure based on how words appeared together, 

which allowed it to predict the next word more accurately. For example, after seeing sequences like 

"artificial intelligence is" or "machine learning is," the model could infer that "powerful," "changing," or 

"evolving" are likely the next words, depending on the pattern. This contextual grounding allowed the 

model to understand and mimic natural language more effectively. 

Impact: N-grams significantly improved the model's learning and processing capabilities. The model 

was now able to capture the flow and sentence structure and could gain more insights into word 

relationships and syntax. By understanding how words naturally group together, the model improved its 

predictive capability even with new or unseen text. For instance, an N-gram model trained on a corpus of 
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articles could predict the next word in a sentence regarding technology or science. Moreover, this approach 

smoothed the learning process,  reducing computational complexity by focusing on meaningful patterns 

instead of processing every word in isolation. Overall,  using N-grams enabled the model to fully capture 

the complexities of language, refine its predictions, and provide a more human-like understanding of text. 

4. Determine Maximum Sentence Length: 

Purpose: Ensuring uniform input dimensions for the model is very important for efficient training, 

which can be achieved through standardization of the input sequence length. 

Implementation: Please identify which one is the longest sentence and use that as the benchmark to 

add words in the shorter ones.  

Role: Padding ensured that all input sequences were of equal length, a prerequisite in deep learning 

models to process batches efficiently. 

Impact: This is where uniform sequence length prevents errors from occurring during model training 

and hastens the speed with which one trains due to batch processing. The information does not get lost in 

the longer sentences, either. 

5. Define Input (X) and Target (y) Variables: 

 Purpose: The words in the input 'X' come before the target word, but the word 'y' predicts the target 

word in front. Therefore, because of this structure, the model can learn how to guess the next word. 

Implementation: Create inputs (X) and targets (y) for every sentence. 

Role: Through input and target variable definitions, this step informed the model how to recognize 

word sequence relations to its prediction. 

Impact: The appropriate definition of X and y ensured that the model focused more on learning from 

the prior context to predict the correct next word (y). The model relies heavily on generalization for its 

unseen text performance, which would be based on this step. 

6. One-hot Encoding: 

 Purpose: For classification tasks in machine learning, it is necessary to transform the target variable 

'y' into a binary matrix. 

Implementation: Change those target words into vectors that have no other element except 1, where 

the length of each vector equals the number of different words that the vocabulary contains. 

The process starts with tokenization, which refers to breaking a sentence into smaller parts known as 

'tokens'. Word tokenization is important when transforming text into a language that computers can 

recognize. A vocabulary index is created, assigning unique numerical values to each distinct word in the 

dataset. 

Next, apply a statistical model in which the subsequent words or character sequences are forecasted 

by the n-grams that consist of "n" items here words or letters so as it can tell what comes next for each n-

gram preceding another one, then segment the text at sentence level by numerically representing its words 

before changing them into n-grams. These sequences play crucial roles. They help one in understanding 

the context and organization of the text. Hence, they are essential in analyzing future terms or groups of 

them. 

It is necessary to determine the length of sentences so that someone can make the input sequence 

uniform and padding to create standardized input dimension enforcement. For this purpose, dataset 

preparation ensures that the model training input dimensions are equal. 

Once that is complete, the input (X) and the target (y) variables are determined. To clarify, the input 

'X' of the model corresponds to the words preceding the intended word to be predicted, while the target 

'y' is the word to be predicted. Out of necessity for machine learning classification tasks, the final processing 

that is carried out on the target variable 'y' involves converting it to a one-hot encoded binary matrix. 

Eventually, the sequential architecture is utilized to create a model in which an embedding layer 

converts word indices into dense fixed-size vectors, and an LSTM layer is added to learn sequence 

dependencies. 

Role: One-hot encoding was critical in transforming categorical data into a format that machines could 

easily process. This technique ensured that each category was treated as distinct and independent by 

assigning a unique binary vector to each class. Unlike numerical representations, which might 

inadvertently suggest an ordinal or ranked relationship between categories, one-hot encoding removed 

any potential bias. For instance, encoding categories such as "dog," "cat," and "bird" each independently 
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appear as different classes without suggesting any one of them is any more important than another. The 

methodology also did not pose a problem concerning compatibility in the neural network layers, so this 

was a highly convenient approach when trying to achieve something like multi-class classification. The 

model would then produce appropriate probability distributions that helped the model learn patterns 

rather than the data's structure introducing bias or interference.[22] 

Impact: One-hot encoding greatly improved the model's efficiency in calculating loss and updating 

gradients correctly during training. Also, providing a fair representation of categories ensured that no 

single class dominated or became misinterpreted for the model, something that is vital in datasets having 

unbalanced classes. For example, if one were classifying several animal species, the model considered 

"elephant" and "mouse" as equally independent categories, even though their frequencies differ in the data. 

Although this can lead to sparse vectors in big vocabularies, embedding layers make up for the one-hot 

encoding, mitigating computational inefficiency. The embedding converts high-dimensional vectors into 

dense representations that enable faster processing and better generalization. Therefore, it helped the 

model to focus on learning meaningful patterns given the one-hot encoding and embedding, ensuring that 

no class would be treated unfairly and - resulting in a more accurate prediction over different data. 

3.3. Model Architecture 

The architecture is Sequential, with the following layers, and the model is constructed by it: 

 
Figure 3. Model Architecture 

1. Embedding Layer: 

The embedding layer plays a role in converting word indices into fixed-size dense vectors, hence 

helping reduce input dimensionality while capturing semantic correlation between words. 

Parameters: The embedding layer has eight hundred and twenty thousand parameters. 

Implementation: During training, this layer receives input word indices and produces dense vectors 

meant to represent the words in a reduced dimensional space after learning. 

2. LSTM Layer: 

It is designed to learn long-term dependencies in data. The Long Short-Term Memory (LSTM) layer 

effectively addresses the vanishing gradient issue in traditional RNNs, thus making them suitable for tasks 

needing sequences, including text prediction. 

Parameters: The LSTM layer has 150,600 parameters. 

Implementation: This layer deals with the sequence of dense vectors from the embedding layer and 

captures the temporal dependencies between the words. 

3. Dense Layer: 
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Final classification decisions were made using learned features by creating a fully connected layer that 

takes in the output of an LSTM layer. This layer receives processing from the LSTM layer to enable the 

final predictions since this is where deep learning generally ends. 

Parameters: There are 123,800 parameters in the dense layer. 

Implementation: The output from the LSTM layer is inputted into the next layer, which is made up of a 

group of neurons that calculate the probabilities of all the words in the vocabulary. 

4. Model Compilation 

Loss Function: The loss function used for multi-class classification problems is categorical cross-

entropy, which calculates the dissimilarity between the projected probability distribution and the real one. 

Implementation: Throughout the training, the model minimizes the loss, thus improving its predictions. 

Optimizer: The Adam optimizer was selected for its speed and ability to achieve better convergence 

by dynamically adjusting the learning rate throughout training. 

Adam builds on the principles of stochastic gradient descent while combining the strengths of two other 

optimization techniques: AdaGrad and RMSProp. By doing so, AdaGrad benefits from its ability to handle 

sparse gradients and RMSProp's adaptability to non-stationary objectives. What sets Adam apart is its 

capability to compute individual learning rates for each parameter, ensuring more efficient and tailored 

updates during the training process. 

The structure of a Recurrent Neural Network with memory over long periods is called Long Short-

Term Memory (LSTM). Whenever gradients diminish quickly during reverse propagation, it is termed a 

vanishing gradient problem in order to imply steepness slopes. Thus, it becomes impossible for usual 

RNNs to comprehend distant dependencies within a series. LSTMs have their way of finding answers to 

problems. It is described that it has three inside each unit three gates; one admits new information while 

another helps lose some of what was once saved in memory when turned on, which is called the forget 

gate, followed by the last one that discharges output data only after all operations have been done 

internally in these circles. They determine how much information is in and out of cells, decide what to 

remember, and produce output, which is shown in equations 1, 2, and 3. 

Forget Gate: 

   𝒇𝒕=𝝈(𝒙𝒕  𝑼
𝒇+ 𝒉𝒕−𝟏 𝑾𝒇)        eq (1) 

Input Gate: 

   𝒊𝒕=𝝈(𝒙𝒕  𝑼
𝒊+ 𝒉𝒕−𝟏 𝑾𝒊)        eq (2) 

Output Gate: 

   𝒐𝒕=𝝈(𝒙𝒕  𝑼
𝒐+ 𝒉𝒕−𝟏 𝑾𝒐)        eq (3) 

One of the strengths of LSTM networks in Artificial Intelligence algorithms is their ability to remember 

patterns or inputs from the past. This ability makes the models even more accurate in predicting future 

words or events, even with new evidence that goes against the previous expectations. It is particularly 

important for language-processing applications because this feature provides the model with a strong 

foundation for making accurate predictions based on a deep understanding of the text and coherence over 

long passages. Language processing, as well as other sequential data tasks, such as time series or DNA 

sequence analysis, might be very difficult and challenging. LSTM networks are ideal for solving these tasks 

because they particularly perform well in tasks that involve predicting data with time dependencies. In 

this regard, they are even more useful when tasks require paying attention carefully to a pattern over a 

period of time. 

 

4. Results and Discussions 

After training our model over a hundred epochs, it was exhilarating to see the results that surpassed 

expectations by far. Progressions were made, so that the model delved deeper into the information stream 

driven by LSTM and transformed its attention slice by slice with each iteration. We found model 

performance metrics had been improving consistently with the increasing number of epochs in training till 

the last epoch, where the accuracy in the validation set was a healthy 87%. 
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Figure 4. LSTM Architecture. 

The number of epochs chosen was 100, which was selected to balance the optimization of learning and 

avoiding overfitting. In LSTM networks, multiple iterations are required for the model to effectively capture 

the sequential dependencies in textual data, especially when recognizing long-term patterns and recurring 

structures. If the number of epochs is too low, the model risks underfitting—failing to learn the patterns 

well enough to generalize to new, unseen data. Conversely, extremely high numbers of epochs may result 

in overfitting, in which the model becomes overly specialized to the training data and is unable to produce 

meaningful text for new sequences. 

Through experimentation, 100 epochs were determined to be an ideal training duration for this task. 

The model could converge to a stable solution at this point, and its prediction accuracy steadily improved. 

The training loss plateaued after 100 epochs, with no significant improvements observed in further 

iterations. It helped ensure that the model was learning effectively and using computational resources 

efficiently. By settling on 100 epochs, the model reached optimal performance for next-word prediction 

tasks, offering a good balance between training time and predictive capability. 

The model was able to predict the next words very accurately. Using long short-term memory (LSTM), 

cells enabled it to grasp contextual subtleties in a text invariably correctly to create logical and contextually 

sensitive predictions effortlessly. It proved its capability to understand the language by producing the right 

examples for grammar and meaning as it was supposed to be in similar circumstances. Accuracy and Loss 

Graphs of LSTM are shown in Figure 5. 

 
Figure 5. Accuracy and Loss Graph 

Case Study: Test Cases 

Here are some examples of the model's predictions: 

1. Input: To Sherlock Holmes she is always the woman. I have ("seldom heard him into the")   

   Prediction: "seldom heard him mention her"   

   Correct: 4/5 words 

2. Input: I had seen little of Holmes lately. My ("marriage had drifted us away")   
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   Prediction: "marriage had drifted us apart"   

   Correct: 5/5 words 

3. Input: One night--it was on the twentieth of March ("1888 I was returning and")   

   Prediction: "1888 I was returning home"   

   Correct: 4/5 words 

4. Input: I could not help laughing at the ease with which he ("explained his cousin was so")   

   Prediction: "explained his reasoning to"   

   Correct: 3/5 words 

5. Input: "Indeed, I should have thought a little more. Just a trifle more, I fancy, ("a trifle and there is")   

   Prediction: "a trifle more and there is"   

   Correct: 4/5 words 

6. Input: I could not help laughing at the ease with which he explained his ("with which he explained his")   

   Prediction: "deductions and reasoning"   

   Correct: 4/5 words 

Table 2. Comparison with the proposed model with existing models 

Criteria Dataset Used 
Number of 

Epochs 
Model Used Accuracy 

[1] Model “Beyond Good and Evil” 100 RNN- LSTM 46% 

[2] Assamese 

Model 

Assamese Text, 

Phonetically Transcribed 

Assamese 

100000 RNN 

Assamese: 82%, 

Phonetic Assamese: 

72.1% 

[3] Bodhi Model English and Bodhi Text 100 LSTM 
English: 70%, 

Bodhi: 50% 

[4] LSTM Model Not specified 100 

LSTM- 

CLOZ 

Distillation 

α = 0.65 

Proposed 

Model 

The Adventures of 

Sherlock Holmes 
100 

LSTM-

Based 
87% 

When examining how our model performs in contrast with other popular models for next-word 

prediction, we find that its robustness and accuracy distinguish it, as shown in Table 2. After just 20 epochs, 

the model that was talked about in [1] hit 46% accuracy, while at the same time, my version recorded 87% 

after 100 epochs, which showed how much there was to gain from doing a lot of hard work and brushing 

things up too. Additionally, my line of attack made it possible for the model to scratch below the surface, 

leading to a better comprehension of patterns and situational nuances and significantly improving its 

quality. The model reported 82% accuracy for Assamese text and 72.10% for phonetically transcribed 

Assamese language in paper [2]. Nevertheless, our model showed 87% accuracy for English content and a 

wider degree of consistency. Our model, therefore, shows its robustness and flexibility over other 

languages or databases, unlike Assamese-specific systems that tended to lag in terms of linguistic 

peculiarities. 

In [3], Bodhi achieved an accuracy of 50% for the Bodhi language and 70% for English. It is important 

to note the challenges faced in training and preprocessing the Bodhi language. The author's model 

performed better overall, particularly in English, where it reached an impressive 87% accuracy. This 

highlights not only the speed of our system but also its ability to handle a wide variety of speech patterns 

without relying on many preprocessors. Beta Company offers tools for measuring the performance of 

various website services, which helped contextualize our model’s effectiveness. 

While LSTM models in [4] did not have specific performance metrics, our achievement of 87% 

accuracy demonstrates the strength of our approach. It shows how well our LSTM model understands and 

predicts context, making it capable of accurately predicting the next word by capturing the subtleties of 

language. This could give our model an edge over others when applied to similar tasks. 

In [6], the authors discussed how performance improvements often come at the cost of increased 

complexity and computational intensity. However, our LSTM-based approach stands out as simpler yet 
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remarkably accurate. This simplicity translates into more efficient use of computational resources, making 

our model a more practical and resource-friendly option compared to more complex architectures. 

Ultimately, our model is both powerful and accessible, ensuring it performs well in next-word prediction 

tasks without demanding excessive resources. 

In most test cases we looked into, our model made a correct prediction for the majority of terms. An 

illustration is where it correctly forecasted 4 out of 5 terms used in the statement: "To Sherlock Holmes, she 

is always the woman. I have seldom heard him mention her." The cover model performed better when it 

came to predicting future terms because it was able to capture contextual details, hence making sure that 

accuracy levels were maintained in various multiple lines of words. This model's capacity for extracting 

and re-producing text based on the context is way above par for most existing models because it performs 

consistently well in accuracy and has efficient syntactic composition. Creating a system that predicts real-

time events while allowing user input has numerous uses, such as anticipating the next word in a 

document as you type it. The model should be tested and validated on bigger and more diverse datasets 

in order to evaluate its generalization and constraint for its capability improvement planning. Integrating 

the model with other NLP techniques, such as sentiment analysis, named entity recognition, or topic 

modeling, can make it even more effective. More in-depth systems can, therefore, be developed to perform 

multiple language understanding tasks by simply adding the model to other models powered by distinct 

NLP techniques. We can improve our next-word prediction model so that it can make better predictions 

for a larger number of real-life situations by probing into the forthcoming lines of action. 

 Compared to other models, the LSTM-based model in this study was found to outperform the others 

because it can capture long-term dependencies and contextual relationships in sequential data. This 

advantage is very important in language modeling, as predicting the next word in a sequence is highly 

dependent on the prior context. Unlike traditional RNNs, which suffer from the vanishing gradient 

problem and struggle to maintain information over long sequences, LSTMs (Long Short-Term Memory 

networks) are designed to address this issue with their specialized architecture, which includes forgetting, 

input, and output gates. These gates help the model to retain information for longer sequences; thus, the 

model is better suited for memory-intensive tasks such as predicting the next word in a sentence. 

For example, to predict words in sequences, the LSTM model can hold and use dependencies 

occurring earlier in a text to better estimate subsequent words. In opposition, models including vanilla 

RNNs and even approaches as simple as Markov fail to account for distant word relationships, thus failing 

to give accurate predictions involving complex language structure. 

Challenges faced by the previous models include the inability to deal with long-range dependencies, 

which is critical in predicting the next word in a sequence. This shortcoming is very clear in tasks that 

involve long or complex sentences. LSTM networks overcome this by storing relevant information over 

time, thus providing better predictive power. 

Further, one-hot encoding enabled the LSTM model to represent words as unique vectors, so there 

was no assumption of the ordinal relationship between the words. It increased the model's performance 

and the model's ability not to depend upon the frequency of occurrence of a word, but the relationships 

between them were enhanced. 

 

5. Conclusions and Future Work 

Our LSTM-based model has now achieved an impressive validation accuracy of 87%; hence, 

impressive next-word prediction performance can be demonstrated using LSTM models. However, during 

training, this model needed careful optimization to predict words appropriately within their surrounding 

context, making it even more accurate and efficient than the other reference models. The potential of the 

model for various natural language processing applications is underscored by its ability to generate 

grammatically correct and contextually relevant predictions. Even though our model has been successful, 

there are a number of areas where it can be researched and improved as integration of Transformer Models 

is possible. For instance, Transformer models, such as BERT, GPT-3, or Transformer-XL, should be 

considered when aiming to increase the forecast quality and better grasp the meaning of context in several 

NLP tasks. It also looks into sub-word and corpus-level modeling by emulating sub-word units like byte 

pair encoding together with corpus-level modeling, which will assist in resolving issues connected to 

unusual lexicons, therefore helping improve models' capability in handling intricate morphological forms. 



Journal of Computing & Biomedical Informatics                                           Volume 08  Issue 02                                                                                         

ID : 786-0802/2025  

References 

1. Ganai, A.F. and F. Khursheed. Predicting next word using RNN and LSTM cells: Stastical language modeling. in 

2019 fifth international conference on image information processing (ICIIP). 2019. IEEE. 

2. Umfurer, A., J.E. Kamienkowski, and B. Bianchi. Using LSTM-based Language Models and human Eye Movements 

metrics to understand next-word predictions. in XXII Simposio Argentino de Inteligencia artificial (ASSAI 2021)-

JAIIO 50 (Modalidad virtual). 2021. 

3. Ramzan, S., M.M. Iqbal, and T. Kalsum, Text-to-Image Generation Using Deep Learning. Engineering Proceedings, 

2022. 20(1): p. 16. 

4. Eisape, T., N. Zaslavsky, and R. Levy. Cloze distillation: Improving neural language models with human next-word 

prediction. 2020. Association for Computational Linguistics (ACL). 

5. Tessema, Y.T., Next Word Prediction For Amharic Language Using Bi-Lstm. 2020. 

6. Luukkonen, P., M. Koskela, and P. Floréen, LSTM-based predictions for proactive information retrieval. arXiv 

preprint arXiv:1606.06137, 2016. 

7. Kumar, A., et al., Next Word Prediction in Bodhi Language Using LSTM Based Approach. Available at SSRN 

4367666, 2023. 

8. Yang, J., H. Wang, and K. Guo, Natural language word prediction model based on multi-window convolution and 

residual network. IEEE Access, 2020. 8: p. 188036-188043. 

9. Elbaghazaoui, B.E., M. Amnai, and Y. Fakhri, Predicting the next word using the Markov chain model according to 

profiling personality. The Journal of Supercomputing, 2023. 79(11): p. 12126-12141. 

10. Tessema, Y.T., Next Word Prediction For Amharic Language Using Bi-Lstm. 2022. 

11. Rosa, J.L.G. A biologically motivated connectionist system for predicting the next word in natural language 

sentences. in IEEE International Conference on Systems, Man and Cybernetics. 2002. IEEE. 

12. Sharma, R., et al. Next word prediction in hindi using deep learning techniques. in 2019 International conference 

on data science and engineering (ICDSE). 2019. IEEE. 

13. Lu, H., et al., Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet of 

Things Journal, 2017. 

14. Ghosh, S., et al., Contextual lstm (clstm) models for large scale nlp tasks. arXiv preprint arXiv:1602.06291, 2016. 

15. Narula, K., A Critical Review on Next Word Prediction. International Journal of Advanced Research in Science, 

Communication and Technology (IJARSCT), 2023. 3(1). 

16. Nanduri, R.K., B. Pinni, and M. Manasa. Next Word Prediction in Telugu using RNN Mechanism. in 2022 

International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). 2022. IEEE. 

17. Buddana, H.V.K.S., et al. Word level LSTM and recurrent neural network for automatic text generation. in 2021 

International Conference on Computer Communication and Informatics (ICCCI). 2021. IEEE. 

18. Sundermeyer, M., R. Schlüter, and H. Ney. Lstm neural networks for language modeling. in Interspeech. 2012. 

19. Nazir, T., et al., EfficientPNet—an optimized and efficient deep learning approach for classifying disease of potato 

plant leaves. Agriculture, 2023. 13(4): p. 841. 

20. Barman, P.P. and A. Boruah, A RNN based Approach for next word prediction in Assamese Phonetic Transcription. 

Procedia computer science, 2018. 143: p. 117-123. 

21. Iqbal, M.M., et al., Automated web-bot implementation using machine learning techniques in eLearning paradigm. 

J Appl Environ Biol Sci, 2014. 4(9). 

22. ul Hassan, M., et al., ANN-Based Intelligent Secure Routing Protocol in Vehicular Ad Hoc Networks (VANETs) 

Using Enhanced AODV. Sensors, 2024. 24(3): p. 818. 

 


