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Abstract: Non technical losses especially in distributed networks play key roles in electricity theft
that pose serious challenges to power grids. As central electricity is distributed through the power
grid to connect all consumers, any fraudulent usage is capable of interfering with the operations of
the grid, produce low-quality supply, and even destroy the overall system. This means, as the data
volume increases it becomes arduous to identify such fraudulent activities. Smart grids provide a
solution in this aspect since electricity flow is bidirectional providing a channel for detection, cor-
rection and application of the corrective measures to the flow of the electrical data. Today’s electric-
ity theft detection techniques incorporate one-dimensional (1-D) electric data leading to maximum
possible imprecision. This work proposes a model that integrates CNN and XGB known as CNN-
XGB. To supplement 1-D theft detection framework, the proposed model includes both 1-D and 2-
D power usage data. A comparison with existing benchmark methods, using experimental sample
results, shows that the proposed model delivers accurate results for the task, which was the main
objective of designing the model.

Keywords: Smart Grids; Energy; CNN; Data Mining; Electricity- embezzlement detection; Machine
learning.

1. Introduction

Electricity is a necessity for many household and industrial uses, it is generated and supplied through
large networks. These comprised land areas, which are often close to energy resources: Energy transformed
into electricity that is transmitted through a network. Unfortunately, structures such as power grids have
societies’ vulnerabilities of fraudulent and electricity embezzlement as issues that affect grid quality, result
in losses and draw unequal voltage. Electricity losses can be broadly classified into two categories: Tech-
nical losses (TLs), which losses are due to the physical characteristics infrastructure of a grid and Non
Technical losses (NTLs), which are a result of interfer record flow irregularities such as bypassing or inter-
fering with electricity meters with a view of producing incorrect readings. These false readings are in the
form of unbilled revenues which impacts negatively on the economy. For instance, power losses resulting
from electricity embezzlement in Canada being put at approximately $100 million yearly.

Electricity embezzlement can be detected using methods such as comparison of meter readings, rein-
stallation of meters or using configuration check; however these methods can hardly handle big data and
even where they do, their accuracy is very low. These issues are solved by smart grids as they are a modern
solution to all of them. These superior smart networks allow two way power provision flow and include
edge computing smart sensors that monitor and gather information about supply flow, use and meter
readings. Smart grids also incorporate features of self-healing, as well as detection-response features aimed
at the identification of malicious data flow. Recent studies, such as [2], [3], and [5], highlight the effective-
ness of smart grids in identifying electricity theft, yet existing models have notable limitations:

Inefficient results arising from analyses based on one-dimensional (1-D) data.

Employing the methods of artificial feature extraction.
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Employment of conventional methods such as linear regression model (LR) and support vector ma-
chines (SVM), which give low results on average.

This work presents CNN-XGB, a new ensemble model aimed at enhancing electricity-embezzlement
detection. One subset of the model is the convolutional neural network (CNN) which is combined with the
extreme gradient boosting classifier. CNNs that has become popular for image classification are able to
select important data features on their own. The CNN model comprises three layers: input, hidden, and
output. For the purpose of increasing the level of accuracy the XGBoost is used on the final layer of the
CNN model that is faster and more efficient.

The proposed CNN-XGB model incorporates two components:

1. Wide component: A 1-D CNN model of the daily electricity consumption data and goes directly to
the fully connected layers.

2. Deep component: A 1-D CNN model with several convolutional and pooling layers that takes as
input weekly electricity consumption data.

Both of these components are connected with the output layer and further reprocessed by the classi-
fier, named XGBoost, in order to make the system more accurate and efficient.

Key Contributions of the Proposed Model:

1. Testing of a CNN-XGB model incorporating both convolutional neural network and XGBoost in the
detection of electricity-embezzlement.

2. The application of daily (wide component) and weekly (deep component) electricity consumption
data.

3. Obtaining high accuracy while using XGBoost classifier.

4. Comparison of the proposed model with other classification models describes enhanced compe-
tency of the proposed model.

The structure of the paper is as follows: Section II offers the literature review; Section III elaborates on
the problem; Section IV explains the CNN-XGB model; Section V demonstrates and discusses the outcomes
of experiments; and, finally, Section VI summarises the conclusion.

2. Related Work

In this section, the paper briefly summarizes the literature on detection of electricity embezzlement
(Section 2.1) and anomaly detection in smart grids (Section 2.2).
2.1 Detection Models regarding the Embezzlement of Electricity

Electricity losses are generally categorized into two types: A Technical Loss (TL) and A Non Tech-
nical Loss (NTL).

- Technical Losses (TLs):

TLs are regarded as being due to problems with the hardware parts of the electrical network for
example a transformer, a meter as well as the power supply. These losses may cause power interruptions,
and may range from a brown out to a full-scale black out. While TLs can be mitigated through hardware
reinstallation or repairs, the following limitations persist:

Possible high costs that come with repurchase of the product due to reinstallation.

Environmental risk — the susceptibility that hardware devices have to fluctuations in their envi-
ronment.

A high degree of recovery processes’ time consumption and intricacy.

Non-Technical Losses (NTLs):

Fraud NTLs originating from tampered with or bypassed meters are difficult to identify and are
easily concealed by the consumer. To overcome this, data driven techniques explore the electricity con-
sumption pattern where classification methods are used to recognize normal and abnormal behavior. From
these existing approaches, it is possible to use svm classifiers which are widely used in the current practice.
But in most cases, the systems based on SVM provide low accuracy of the result, which shows the necessity
of developing more effective detection models.

2.2 Anomaly Detection in Smart Grids

Abnormality, specifically used in analyzing the data, means that there are some unusual trends or
phenomena, which may involve fraud. It is well understood that anomalies are indispensable in reliability,
operational, and fraud monitoring in smart grids. Smart grids include components incorporating state-of-
the-art sensors for real-time monitoring.
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However, these methods work with one-dimensional (1-D) data only and, therefore, give rather in-
accurate and unreliable results. Even if we are only looking at the amount of electric power consumed
every day, this is not enough to offer a very accurate estimate. To overcome these limitations, the CNN-
XGB model is presented here.

The CNN-XGB model uses 2-D data in order to enhance the anomaly detection as it applies ConvNets
and eXtreme Gradient Boosting. when combining these two methods, the accuracy of the proposed model
is higher and the limitations of existing detection systems are eliminated to provide more efficient identi-
fication of frauds.
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Figure 1. An illustration of the power consumption associated with typical use. (a) The amount of elec-
tricity used per day. (b) The amount of electricity used per week.
3. Problem Analysis

Electricity is generated and supplied via power systems distributed near energy sources, which are
known as power transmission grids. These grids use power to produce electricity and supply it to users by
intelligent grids. Smart grids are complex power networks that come integrated with smart sensors or
meters which capture data on usage and electricity statistics. Features of big data and edge computing are
incorporated into smart grids to enable analysis of large datasets gathered by these sensors.

However, the very capabilities that make smart grids efficient also make them susceptible to mali-
cious attacks, including:

e  Malware to change the performance of meters.
e  Tampering with meters to display untruthful information.
e  Tampering of meters, so that they can be compelled to provide fake readings.

These malicious activities lead to issues such as reduction in the efficiency and quality of transmit-
ted electricity and new stress losses. These effects may include; reduction in economic and operational
stability.

3.1 Data Volume and Noise:

The data about electricity consumption is usually massive and noisy, and it is a problem in analyz-
ing such data.

3.2 Daily Data Variability:

The dataset mainly consists of the daily electricity consumption data series recorded as one-di-
mensional, which are characterized by high variability and fluctuations, which increases the complexity
of fraud identification.

3.3 Limitations of Traditional Methods:

Previous techniques for detecting electricity embezzlement cannot be applied successfully on
large datasets and offer consistency of accuracy only when dealing with one-dimensional data.
3.4 Proposed Solution: CNN-XGB Model

In response to these challenges, this study proposes an ensemble model consists of CNN and XGB
for electricity-embezzlement detection.
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Figure 2. An illustration of the power consumption associated with typical use. (a) The amount of elec-
tricity used per day. (b) The amount of electricity used per week.

4. Dataset Characteristics:

The data set used in this study is obtained from SGCC, consisting of electricity usage records from
42,372 customers for two years; two distinct years; 2014 and 2016.
4.1 Daily vs. Weekly Data:

Daily and weekly electricity consumption are visualized in the diagrams 1(a) and 1(b) concerning
the January 2014.

Daily and weekly electricity consumption during August 2015 is shown in figures 2(a) and 2(b).

Observation: Daily values have large changes, based on which, it is difficult to identify fraudulent
actions, and to the contrary, weekly values are more stable in order to notice fraud.
4.2 Pearson Correlation Coefficient (PCC):

When PCC is applied to the daily consumption data and weekly electricity data, it shows high

values (> 0.80), two-dimensional data has more valuable insights than one-dimensional data.

5. Challenges Addressed by the Proposed Model:

5.1 Noise in Large Datasets:

CNN'’s ability to extract features from the data means that noisy data is well handled since the fea-
tures to be extracted are pre-set.
5.2 High Variability in Daily Data:

Weaknesses that might be evident in daily data due to day to day variations are minimized when
data is taken in weekly form which is two dimensional.
5.3 Limitations of Traditional Methods:

The combination of features extracted using CNN and classification made using XGB outperforms
of previous methods giving up to an improvement in accuracy and dependability.

These are the challenges that the design of the CNN-XGB model takes into account to give an opti-
mal solution to detect electricity-embezzlement and reduce the cost, time and accuracy.
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Figure 3. PCC for Electricity Consumption
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6. Proposed Methodology

The proposed methodology consists of three primary phases to detect electricity embezzlement ef-
fectively:
Data Preprocessing
The second research question relates to the effectiveness of model for the analysis of the data set ~ 2.5.
Data Analysis Under XGBoost Model
6.1 Data Preprocessing

The datasets that we have for electricity consumption are usually big, noisy and missing values might
be present due to smart meter risks. In other words, data cleaning is one of the prerequisites for data anal-
ysis.
6.2 Handling Missing Data

By missing value handling it is mean that interpolation is used in the current dataset. Interpolation
assumes the missing data points as the mean and is calculated by adding two data points before and after
the missing one divided by 2.

The mathematical representation of interpolation is:

Xmissing — Xnext
Xmissing = f

Where:

- X_{missing}: The parameter that has to be reconstructed in this case.

- X_{previous}: The value which is just before the missing entry.

- X_{next}: The value before the first gap A[i] The value right after the missing entry A[i+1]

6.3 Noise Reduction

The raw data in the dataset is filtered in order to eliminate fluctuation and improve the data quality
for the next computational step.
6.4 Normalization

The obtained data is pre-processed and then normalized so as all the features have an equivalent
influence on the developed model. Normalization scales the data to a standard range, typically between 0
and 1, using the formula:

Xnormalized = M
Xmax — Xmin
Where:
- X: Original data point.
- X_{min}: Minimum value in the dataset.
- X_{max}: Maximum value in the dataset.

These preprocessing allow us to have a clean, consistent and ready to be processed dataset to be used
in applying the proposed CNN-XGB methodology.

More specific descriptions of the CNN and XGBoost phases will expand on those benefits and also
how combining CNN and XGBoost is a powerful predictor of the optimal solution.

Where, x; shows the missing value, x;_; shows the previous value and x;,; shows the next value
of the missed value. Moreover, for erroneous values, we applied the empirical rule i.e., the three-sigma
rule which uses three standard deviation methods to recover the erroneous data.

6.5 CNN-XGB Framework

The CNN-XGB architecture consists of two core components: In analysing and identifying relevant
features the model incorporates the CNN Component for feature extraction and the XGB Component for
classification. The architecture of the proposed framework are shown in the Fig. 4 where each of the com-
ponents brings in certain key strengths to gain high accuracy in detection of electricity embezzlement.

6.6 CNN Component

The CNN Component, depicted as red dashed box in the Fig.4 is intended to perform feature extrac-
tion from the electricity consumptions dataset. Through this element, the collected daily as well as weekly
consumption data are worked out. Key elements and their roles are described below:

6.7 Wide CNN Component

The Wide CNN Block tackles 1-D input data (daily time series of electricity consumption). Its main
purpose is to give loss minimization capacity to the model which in turns assist the model in finding out
recurrent patterns in the dataset.

- Input: Data on daily electricity consumption are obtained and arranged in a one-dimensional format.
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- Processing: The information is then input into a layer of fully connected neural network in which
one neuron is connected to every other neuron.

- Output: A 1-D electricity consumption score is calculated as follows;

Z=WX+b (2)
Where:

- W: Coefficient values associated with the respective neuron of the network.

- X: Input data (1-D).

-b: Bias term.

- Z: Total score calculated by the fully connected layer.

6.8 Deep CNN Component

The Deep CNN Block processes two-dimensional input data which is obtained by weekly aggregation
of daily consumption data. This transformation enables one to identify patterns that would not have been
realized using only 1-D data.

- Input Transformation: Transforms the one dimensional daily time series data into two dimensional
matrix (weekly consumption data).

- Processing: The transformed data go through two or more convolutional layers and pooling layers
to extract the strong features.

6.9 CNN 2-D Model
The CNN 2-D model architecture consists of:

- Two Convolutional Layers:

- Kernel size: 3*3.

This was done to extract spatial features by filtering through the data with 2 dimensions.

- Two Pooling Layers:

- Pool size: 2*2.

— A process reduces the number of features while preserving those of greater importance.

- Feature Extraction: What the 2-D input format manages to do is to capture much more detailed
patterns and inter-correlation within weekly data in the model. These features are then passed to the next
stage where the classification will take place.

6.10 Activation Function: Leaky ReLU

The CNN component uses Leaky ReLU as the activation function to avoid the problem of ReLU that
all the ReLU neurons become inactive and no long learnable. Advantages of Leaky ReLU include:

1. Eliminates possibility of sync and inhibits neurons from becoming dormant.

2. Speeds up the process of training.

3. Improves the speed in large scale modeling.

The mathematical formulation of Leaky ReLU is:
x<0

X,
fGo) = {oc X, x=0
Where:
- x: Input value.
- «: A small fixed value like for example, 0.01.
The CNN component perfectly processes and extracts significant features from one and two dimen-
sional consumptions and is suitable for the subsequent step of the analysis in the XGB Component.
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Figure 4. CNN Architecture
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6.11 XGB Component

Classification is done through the Extreme Gradient Boosting (XG-Boost) component of an ensemble
learning system. It integrates feature extraction of the CNN and the efficient gradient boosting of decision
trees to improve predictive score.
6.12 Advantages of XG-Boost:

1. Efficient Handling of Missing Data: Saves the need to check for missing values while developing a
model.

2. Cross-Validation: Enables to make more strong and effective evaluation of the model performances
during the training phase.

3. Regularization: Helps prevent overfitting by implying a penalty for any model that is too complex.
6.13 Mathematical Formulation:

However, the gradient descent that is used in XG-Boost helps to minimize the loss function in the
iterative manner. Its formula is:

y =o(WTX+b) (3)

7. Experimental Results

In this section, we demonstrate results of experiments and compare the results of the proposed CNN-
XGB model with other methods.
7.1 Experiment Settings

- Dataset: The experiments employ the electricity consumption dataset of the State Grid Cooperation
of China (SGCC).

- Timeframe: Information is for 2019/2020 and 2020/2021 academic years.

- Total Consumers: 42,372.

- Consumer Classification:

- Normal Consumers: 38,757 (91%).

- Fraudulent Consumers: 3,615 (9%).

- Visualization: The percentage of normal and fraudulent consumers is represented graphically in the
figure 5 shown below.

- Label 0: Represents normal consumers.

- Label 1: stands for dishonest consumers.
7.2. Performance Metrics

To evaluate the proposed model, we employed Receiver Operating Characteristics (ROC) and Preci-
sion-Recall (PR) graphs:

1. Receiver Operating Characteristics (ROC):

Performance thresholds are measured by the use of True Positive Rate (TPR), and False Positive Rate
(FPR) .

- Mathematical Formulations:

TPR = TP
TP + FN

FPR = Fp
FP + TN

Where:

- TP: TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Positives.
7.3 ROC-AUC Graphs:

- Figure 6(a): lllustrates the ROC graph of the proposed CNN framework as a proof of its efficacy
toward the classification of consumers.

- Figure 6(b): Shows the ROC graph for the applied CNN-XGB framework and proves that it outper-
forms isolated CNN.

7.4 Precision-Recall Graphs:

In order to complement the Precision-Recall analysis, as well as in order to demonstrate the efficiency
of the proposed model in the case of imbalanced datasets, the comparison threshold is set to 9% of the
fraudulent cases, which is far fewer than normal cases.

The combination of CNN-XGB model addressed the issues of class imbalance by realising high ROC-
AUC score and establishing that the model is responsive to fraud detection. Comparisons with other meth-
ods not covered in this section are provided in Section V-B.
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Table 1. Metadata Information

Description Value
Electricity Consumption Time 2021 -2031
Total Consumers 82372
Normal Consumers 78726
Fraudulent Consumers 3646
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Figure 6 (a). ROC Curve for CNN
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Figure 6 (b). ROC Curve for CNN-XGB
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Figure 7. Precision-Recall Curve

Therefore, Fig. 7 shows that the precision-recall curve for the proposed model is near equal to 1.0
which determines that the result of each extracted feature is relevant.

The performance of the proposed CNN-XGB model is compared against existing models using the
provided dataset. These baseline models include Logistic Regression, Random Forest (RF), Support Vector
Machine (S§VM), and a standalone CNN model. Logistic Regression serves as a fundamental binary classi-
fication technique, employing a single-layer neural network with a sigmoid activation function. Although
computationally efficient, its ability to handle complex patterns is limited. The Random Forest model, an
ensemble technique, combines multiple decision trees to deliver robust predictions and mitigate overfitting.
However, its scalability for larger datasets can be a challenge. The Support Vector Machine employs sup-
port vectors to define a hyperplane for classification, proving effective for both linear and non-linear prob-
lems but is computationally demanding on larger datasets. The CNN model utilizes multiple convolutional
and pooling layers to extract features from both 1-D (daily consumption) and 2-D (weekly consumption)
data, offering a more sophisticated approach to feature extraction compared to traditional machine learn-
ing methods.

The proposed CNN-XGB model, which combines CNN's feature extraction capabilities with XG-
Boost’s robust gradient boosting technique, achieves superior performance. This hybrid approach en-
hances the efficiency of the model, handles imbalanced data effectively, and reduces overfitting issues.
Metrics used for evaluation include accuracy, precision, recall, F1-score, and the area under the curve (AUC)
for receiver operating characteristic (ROC) analysis. The CNN-XGB model outperformed all other models
in every metric. For instance, Logistic Regression achieved an accuracy of 75.6% and an AUC of 0.74, while
Random Forest and SVM showed improvements with accuracies of 82.3% and 84.1% and AUCs of 0.81
and 0.83, respectively. The standalone CNN model performed notably better, achieving an accuracy of 87.5%
and an AUC of 0.88. However, the CNN-XGB model surpassed all others with an accuracy of 92.7%, pre-
cision of 90.6%, recall of 91.8%, F1-score of 91.2%, and an AUC of 0.93.

These results highlight the superiority of the CNN-XGB model, which benefits from CNN’s ability
to extract meaningful features from complex datasets and XG-Boost’s refinement of predictions through
gradient boosting. This combination ensures more accurate and robust fraud detection, as evidenced by its
strong performance metrics, making it a reliable approach for detecting electricity consumption fraud.

Table 2. Performance Comparison

Model Accuracy  Precision Recall F1-Score AUC
Logistic Regression 75.6% 72.4% 68.9% 70.6% 0.74
Random Forest 82.3% 78.1% 80.4% 79.2% 0.81
Support Vector Machine  84.1% 79.8% 82.7% 81.2% 0.83
CNN Model 87.5% 85.3% 86.8% 86.0% 0.88
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CNN-XGB Model 92.7% 90.6% 91.8% 91.2% 0.93

We may see that the suggested model's accuracy and precision are superior to those of competing
models. Similarly, Fig. 8 depicts a graphical depiction of the comparison between the performance of the
proposed model and the performance of the other current models. Compared to previous models, we can
see that our suggested model has superior precision and accuracy.

Comparnson of Models

N Accuracy
N Precision
0.8 ~ EE Recall
. Fl-Score
N ROC-AUC
e
04 4
0.2
00 -
M RF LR Wide & Deep CHNN - CNN-XGB

Figure 8. Comparison Results of various machine learning algorithms

8. Conclusion

This study proposed CNN-XGB model with features of detecting power theft in smart grids. It inte-
grates convolutional neural network (CNN) and extreme gradient boosting (XG-Boost) as the two strong
algorithms to integrate and develop an electricity embezzlement discovering system. The CNNs used on
our model are CNNs for image classification and do not require manually selecting characteristics from
the data set. It is combined with XG-Boost at the output layer as CNN to increase its efficiency and ascertain
the highest identification rate. Comparison outcomes confirms that the detection accuracy of the proposed
technique, namely, CNN-XGB is higher than the comparative methods, proving that CNN-XGB is a highly
efficient solution for the detection of power theft in smart grid systems.
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