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Abstract: Single nucleotide polymorphisms (SNPs) are changes at specific spots in DNA. These 
changes help identify genes linked to diseases or trace inherited conditions within families. 
Variations in the Rb1 gene can lead to retinoblastoma, which is cancer in one or both eyes, as well 
as other cancers like osteosarcoma, melanoma, leukemia, lung, and breast cancer. First, this study 
used the SNP database from NCBI to gather key data. It also analyzed how Rb1 is connected to other 
genes using GeneMANIA. Ten different tools were applied to screen for harmful SNPs, including 
SIFT, PolyPhen-2, I-Mutant 3.0, PROVEAN, SNAP2, PHD-SNP, PMut, and SNPs&GO. To estimate 
conserved amino acid regions, the Consurf Server was used, and Project HOPE was utilized to study 
the structural effects of mutant proteins. GeneMANIA showed that the Rb1 gene is strongly linked 
to 20 other genes, such as CCND1 and RBP2. The data obtained from the NCBI's dbSNP indicated 
that the total number of SNPs within the Rb1 gene region is 36,358. Of these, 345 were found in the 
3' UTR, 65 in the 5' UTR and 34,543 in the intron regions. There were 844 coding SNPs including 199 
synonymous, 450 non synonmous which consists of 425 missense, five nonsense, and 20 frameshift 
mutations. The remaining SNPs were of other types. This study focused on the 425 missense SNPs 
for research. From these, 17 mutations (D332G, R445Q, E492V, P515T, W516G, V531G, E533K, E539K, 
M558R, W563G, L657Q, A658T, R661Q, D697H, D697E, P796L, and R798W) were predicted to cause 
harmful effects on the structure and function of the Rb1 protein. 
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1. Introduction 
This research work is split into two parts. The first part will be retrieving data from the database 

and emphasizing Rb1, which stands for retinoblastoma. Called sporadic or genetic, this is much more 
aggressive if it is allowed to be left without treatment. The current work investigates the in-silico method 
of identifying the genetic disorder utilizing a variety of computer methods. On chromosome 13, the tumor 
suppressor gene Rb1 regulates cell division and proliferation. Until the cell is properly divided, it stops the 
cycle of cell division. Before the cell divides, Rb1 gets phosphorylated to pRb, eventually leading to the 
inactivation of the retinoblastoma protein [1]. This process makes the cell's entry into the cell cycle possible, 
possibly leading to a mutation in this gene [2]. While, chronic activation by Rb1 leads to a gradual decrease 
in the essential factors of DNA replication, with all targeted proteins showing suppressed DNA replication 
activity after more than 72 to 96 h of continuous activation [3]. This can sometimes lead to maladies where 
DNA replication gets suppressed in cellular biology [4]. Rb1 is part of the "pocket protein family," which 
contains retinoblastoma protein (RB), retinoblastoma-like protein 1, and retinoblastoma-like protein 2. The 
total count comes to at least 100 proteins these three homologous members can bind to. Hence, Rb1 is a 
multitasking protein with multiple phosphorylation and binding sites, especially with the E2F family [7]. 
Almost everything agrees because the human genome is composed of 3.2 billion nucleotides distributed in 
24 linear molecules [8]. One further scope of research is the RB1 gene of chromosome 13, having 
approximately 114 million base pairs, accounting for 3.5%-4.0% of the total genome in cells. These 
nucleotide differences, known as "single-nucleotide polymorphisms (SNPs)," happen roughly once per 
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1,000 nucleotides, or at a rate of 1% of all nucleotides. As a result, there are over 100 million SNPs 
worldwide and 4-5 million SNPs within the human genome [9]. These changes can occur between genes in 
DNA [10]. SNPs can act individually to cause phenotypic changes or, at other times, act together to 
contribute to diseases like osteoporosis [11]. Researches show that more than half of the genetic alterations 
connected to diseases are linked to non-synonymous SNPs (nsSNPs) [12]. The severity of each mutation 
varies; some merely have minor consequences [13]. The function of the RB1 gene is impacted by hundreds 
of thousands of mutations [14]. One in every 16,000–18,000 live newborns is affected by retinoblastoma, 
which causes 9,000 new cases globally each year [15]. Leukocoria, or "amaurotic cat's eye reflex," crossed 
eyes, aberrant pupil appearance, strabismus, or inability to concentrate both eyes in the same direction, are 
common symptoms [16]. Other symptoms include Iris color changes, edema, redness, and blurred vision 
[17]. Two types of retinoblastoma are identified: unilateral, affecting one eye and usually detected at 24 
months of age, and bilateral, affecting both eyes and detected at 12 months [18]. Retinoblastoma can cause 
visual loss in children, and in more severe situations, it may need the removal of the affected eye or eyes 
[19]. 

Retinoblastoma comes in two flavors: hereditary and non-hereditary [20]. Each offspring of a person 
with hereditary retinoblastoma has a 50% chance of receiving the mutant gene due to autosomal dominant 
inheritance [21]. This type, if inherited, frequently causes numerous tumors in both eyes [22]. Conversely, 
non-hereditary retinoblastoma is not inherited and does not affect future generations. The RB1 gene is 
present in two normal copies at birth in affected individuals, but mutations that cause cancer develop in 
early childhood [23]. However, these alterations are not transferable to progeny [24]. Non-hereditary 
retinoblastoma usually results in one tumor in one eye. While it can be difficult to determine if 
retinoblastoma is hereditary or non-hereditary [25], genetic testing can provide clarity [26]. Hereditary or 
germinal retinoblastoma, caused by genetic mutations in RB1, spreads to all body cells and is more 
dangerous as it often leads to cancer in both eyes or other parts of the body [27]. 

Mutations in the Rb1 gene are also the primary cause of pineoblastoma [28], a type of cancer that 
occurs in the pineal gland of the brain [29]. These genetic mutations are also linked to breast cancer, lung 
cancer, and osteosarcoma, a form of bone cancer [30]. Furthermore, Rb1 mutations cause sarcomas, or soft 
tissue malignancies [31], which usually appear in people between the ages of 10 and 20 [32], particularly 
in retinoblastoma survivors [33]. Melanoma, a severe type of skin cancer that often begins in the skin but 
can also, in rare instances, grow in the mouth, intestines, or eyes [35], is another condition that is 
exacerbated by Rb1 mutations. Approximately 25% of melanomas originate from simple moles [36]. 
Somatic mutations in the Rb1 gene have also been associated with leukemias, cancers of blood-forming 
cells [37]. This study aims to offer personalized medical treatment based on a detailed analysis of an 
individual's genome. While it can be difficult to identify functional SNPs in certain genes using 
conventional laboratory instruments and procedures, advances in in-silico approaches now allow for 
identifying these SNPs without requiring much lab work [38]. This study uses a variety of computational 
methods and tools to investigate genetic differences in SNPs and their possible effects on the composition 
and functionality of the Rb1 gene. 

 
2. Materials and Methods 
2.1. Data Gathering 

All the required SNP particulars of the human Rb1 gene, i.e., "rsids, Protein accession 
Number=NP_000312.2, mRNA accession Number=NM_000498.3, and residue changes" have been 
extracted From National Center for Biotechnology Information (NCBI), which is SNP's Public database i.e. 
dbSNP https://www.ncbi.nlm.nih.gov/). Out of 844 coding SNPs, 425 missense SNPs were taken Into 
account for further analysis using different bioinformatics tools. Although a division of Coding SNPs at 
different regions is shown in Figure 1. 

 
 
 
 

https://www.ncbi.nlm.nih.gov/
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Figure 1. Graphical Portray regarding the division of coding SNPs for Rb1 Gene(as per NCBI) 

2.2. Scanning the association of Rb1 with other Genes using GeneMANIA  
A program called GeneMANIA comprises 597,392,988 relationships of 163,599 genes that provide 

information about each gene's function, including pathways, co-localization, genetic interactions, physical 
interactions, and protein domain similarity [39]. An integrated plugin in GeneMANIA makes use of a large 
database that contains information from several different organisms. GeneMANIA can be accessed via this 
website: https://genemania.org. 
2.3. The anticipation of Damaging and Tolerated nsSNPs and functional effects by SIFT 

The "Sorting Intolerant from Tolerant (SIFT)" method is being used, and it predicts the physical and 
chemical properties of amino acids as well as whether or not the substitution of an amino acid impacts 
protein function based on sequence homology [40]. Every piece of information above came from NCBI 
(https://www.ncbi.nlm.nih.gov/). By using the tolerance Index (TI) score, we were able to predict by SIFT 
the harmful and tolerable effects of non-synonymous SNPs discovered in the coding area. We can predict 
acceptable and harmful amino acid substitutions based on this score. Tolerance thresholds vary from 0.0 
to 1.0, whereas harmful thresholds are less than 0.05 [41]. By selecting "Median Conservation Sequence 
Score 3.00" and utilizing various databases, including Swiss-Prot and TrEMBL, SIFT analysis was able to 
identify homologous sequences based on algorithms. The following URL will take you to Sift: 
https://sift.bii.a-star.edu.sg 
2.4. The anticipation of functional impacts of nsSNPs using PolyPhen-2  

The software PolyPhen-2 (Phenotyping Polymorphism) automatically forecasts the potential effects 
of replacement of amino acids on the structure and functionality of human proteins [42]. In order to 
calculate position-specific independent counts "PSIC" scores for both types of amino acids, Polyphen-2 
finds "3D protein structures" and "contact information" of amino acids. The PSIC score difference is then 
calculated. The functional effect is directly correlated with the score difference, meaning that each 
functional effect would increase with a larger "PSIC" score [43].  The polyphen-2 scores fall between 0.0 
and 1.0.  
• It is expected that variants scoring between 0.0 and 0.15 are innocuous [44]. 
• Variants with scores between 0.15 and 1.0 are predicted to be potentially harmful [45]. 
• It is predicted that variants with scores between 0.85 and 1.0 will cause harm [46].  

The URL for Polyphen-2 is http://genetics.bwh.harvard.edu/pph2 
2.5. The anticipation of protein Stability using I-Mutant 3.0  

I-Mutant 3.0 predicts fluctuations in protein stability via neural networks and Support Vector 
Machine (SVM) algorithms. Analysis indicates that I-mutant outperforms other tools [47]. “Distance-Scaled, 
Finite Ideal Gas Reference (DFIRE),” “FoldX,” and “Prediction of Protein Mutant Stability Changes 
(PoPMuSiC).” [48]. In I-Mutant 3.0, the wild type free energy was subtracted from the mutant accessible 
point to obtain the "free energy change (ΔΔG)." A positive sign of (ΔΔG) indicates the best stability of the 
protein. The negative sign of (ΔΔG) signifies reduced protein stability [49]. In summary, if (ΔΔG) > 0, it 
indicates enhanced protein stability, but if (ΔΔG) < 0, it signifies reduced protein stability [50].  

I-Mutant 3.0 is located at http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi 

https://genemania.org/
http://genetics.bwh.harvard.edu/pph2
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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2.6. Identification of functional nsSNPs using PROVEAN 
PROVEAN (“Protein Variation Effect Analyzer”) is a rapid computational method that finds 

functionally significant nsSNPs, predicting if amino acid substitutions impact the protein's biological 
activity. Scores below -2.5 indicate detrimental SNPs, while scores above -2.5 are classified as neutral SNPs 
[52]. PROVEAN can be accessed at http://PROVEAN.jcvi.org/seq_submit.php 
2.7. Validation to anticipate the functional impacts of sequence variants using SNAP2  

SNAP2 serves as a bioinformatics tool designed to predict the functional consequences of sequence 
variants or amino acid mutations [53]. A trained classifier that utilizes the concept of machine learning is 
referred to as a neural network [54]. It is essential for distinguishing between affected and neural nsSNPs 
by considering straightforward data [55]. The visual representation exhibits a certain level of technicality, 
as illustrated in Figure 2. 

 
 
 
 
 
 
 
 
 

Figure 2. Heatmap Visual Representation 
This visual representation has the following criteria; 

•  Dark red tiny blocks indicate score > 50 means a Strong Signal yet affected. 
•  White tiny blocks indicate -50<score<50 means weak signal. 
•  Green tiny blocks mean score <-50 means strong signal yet neutral. 

SNAP2 is available at https://www.rostlab.org/services/snap/ 
2.8. Predicting diseased mutations Using PHD-SNP  

PhD-SNP, which stands for “Predictor of human deleterious single nucleotide polymorphism,” is a 
bioinformatics software developed using the Support Vector Machine (SVM) methodology [56]. This 
software is employed to differentiate between diseased and neutral amino acid substitutions among the 
deleterious nsSNPs identified by the aforementioned tools, including SIFT, Polyphen-2, I-Mutant 3.0, 
PROVEAN, and SNAP2 [57]. The main reason for utilizing this tool is to ensure accurate results through 
verification [32].  

"PhD-SNP" can be accessed at http://snps.biofold.org/phd-snp/phd-snp.html 
2.9. Predicting diseased mutations Using PMut 

A bioinformatics web server is utilized to identify disease-causing mutations. It lacks objectivity. 
Neural Networks are utilized for information processing [58], yielding straight forward predictions 
regarding neutral or disease mutations, along with associated prediction scores. PMut can be accessed at 
http://mmb.irbbarcelona.org/PMut 
2.10. Predicting diseased mutations Using SNPs&GO  

It is a bioinformatics technique utilizing a support vector machine (SVM) to identify mutations that 
cause disease. Upon input submission, the program will analyze the data and deliver results in the form of 
neural or disease mutations, along with the Reliability Index (RI). If the RI value displayed by the tool 
exceeds 5, it signifies that this mutation is associated with a disease-related protein [59]. SNPs&GO can be 
accessed at http://snps.biofold.org/snps-and-go/snps-and-go.html 
2.11. Evolutionary conservation analysis of nsSNPs: 

The Consurf Server is a bioinformatics tool utilized to assess the evolutionary conservation score of 
amino acid positions essential for the function and structure of the Rb1 gene [60]. Evolutionary 
relationships assess consurf scores. The conservation score scale is shown in the results using a diagram 
and table derived from UniRef-90. The precision of the conservation score has markedly enhanced due to 
the empirical Bayesian method, given that no sequences for computation are fewer than [61]. The Consurf 
Server can be accessed via https://consurf.tau.ac.il. 

http://provean.jcvi.org/seq_submit.php
https://www.rostlab.org/services/snap/
http://snps.biofold.org/phd-snp/phd-snp.html
http://mmb.irbbarcelona.org/PMut
http://snps.biofold.org/snps-and-go/snps-and-go.html
https://consurf.tau.ac.il/
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Figure 3. Workflow of in silico methods used in this Study 
2.12. Predicting the impact of nsSNPs on 3D Protein Structure 

Project Hope is an accessible web-based bioinformatics tool utilized for the collection of 3D protein 
structures by doing calculations on 3D protein coordinates, utilizing sequence annotations from the 
UniProt database, and obtaining estimations through DAS services. “Project Hope” can be accessed at 
(http://www.cmbi.ru.nl/hope/). Figure 3 on the subsequent page illustrates the comprehensive technique 
employed in this investigation.  

 
3. Results 

According to the GeneMANIA software, Rb1 is associated with 20 other genes. Among these 20, 
CCND1 is strongly associated with Rb1, the sub-component of “holoenzyme”. Different parameters i.e., 
physical interactions, genetic interactions, and co-expression of the Rb1 gene with Other genes are shown 
in Table 1 and Figure 4. 

Table 1. Gene Description Rank Using GeneMANIA 
Sr # Genes Description Rank 

1. RB1 RB transcriptional corepressor 1 N/A 
2. CCND1 cyclin D1 1 
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3. RBP2 retinol-binding protein 2 2 
4. ATF7 activating transcription factor 7 3 
5. CBX4 chromo box 4 4 
6. TAF1 TATA-box binding protein associated factor 1 5 
7. GTF3C2 general transcription factor IIIC subunit 2 6 
8. ID2 inhibitor of DNA binding 2, HLH protein 7 
9. ELF1 E74, like ETS transcription factor 1 8 
10. CDK4 cyclin-dependent kinase 4 9 
11. PAX3 paired box 3 10 
12. BRF1 BRF1, RNA polymerase III transcription initiation 

factor 90 kDa subunit 11 
13. RBL1 RB transcriptional corepressor like 1 12 
14. RBL2 RB transcriptional corepressor like 2 13 
15. PURA purine-rich element binding protein A 14 
16. PPP2R3B protein phosphatase 2 regulatory subunit B''beta 

[Source:HGNC Symbol; 15 

  Acc: HGNC:13417]  
17. SUV39H1 suppressor of variegation 3-9 homolog 1 16 
18. IRF3 interferon regulatory factor 3 17 
19. PAX5 paired box 5 18 
20. DNMT1 DNA (cytosine-5-)-methyltransferase 1 19 
21. GTF2H1 general transcription factor IIH subunit 1 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Results of GeneMANIA for Rb1 Gene 
Table 2. Summary 

Sr # Tools Results 
1. Sift Total SNPs=425 

Damaging=139 
Tolerated=276 

N/A=7 
Not secured=3 

2. 
    

Polyphen-2 Total SNPs=425 
Possibly damaging=93 

Probably Damaging=156 
Benign=176 

3. I-Mutant3.0 Total  SNPs=425 
Decreased =325 
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Increased=100 

4. PROVEN Total SNPs=425 
Deleterious=89 

Neutral=336 
5. SNAP2 Total SNPs=425 

Effect=200 
Normal=225 

6. PHD-SNP Total Common damaging SNPs=40 
Diseased=26 
Neutral=14 

7. Pmut Total Common damaging SNPs=40 
Diseased=24 
Neutral=16 

8. SNP& GO Total Common damaging SNPs=40 
Diseased=40 

Neutral=0 

9. Consurf Server Total Common damaging SNPs=21 
Conserved=19 

Non-Conserved=2 
10. HOPE Total Common damaging SNPs=21 

Damaging=17 
Non –Damaging=04 

3.1. SIFT Results 
Out of all coding SNPs, only missense SNPs were taken into account, as these nsSNPs directly affect 

the structure and function of the protein. First, to find out whether the mutations affect the part of the 
protein, a total of 425 missenses were submitted into SIFT. Out of 425, 139 were declared as damaging 
nsSNPs. 
3.2. Polyphen-2 Results 

Polyphen-2 is used to analyze the possible effect of amino acid substitution on a protein's structure 
and function. When 425 nsSNPs were submitted into polyphen-2,93 were declared as Possibly 
damaging,156 as Probably Damaging, and 176 were Benign. 
3.3. Mutant 3.0 Results: 

I-Mutant 3.0 is used to automatically analyze changes in Protein stability upon mutations on specific 
points. I-Mutant predicted 325nsSNPs as decreased stability when all 425 nsSNPs were submitted into I-
Mutant 3.0. 
3.4. PROVEAN Results 

PROVEAN Server to further forecast whether amino acid substitution affects the biological function 
of the protein or not. PROVEAN declared 89 nsSNPs as deleterious when all 425 nsSNPs were submitted 
to it. 
3.5. SNAP2 Results 

After this, SNAP2 was used to determine the impact of mutations on the protein's function. SNAP2 
declared 200 nsSNPs as affected out of 425. 
3.6. Results of Comparison Method 

To go for the best, the comparison method is used to compare the results of all the above tools. Table 
3 shows the 40 common deleterious nsSNPs declared by SIFT Polyphen-2, I-Mutant 3.0, PROVEAN, and 
SNAP2. 
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4. Results of PhD-SNP, PMut, and SNPs&GO 
To analyze whether these above 40 Common damaging SNPs are disease-causing or neutral, we 

will check them utilizing several tools, i.e., PhD-SNP, PMut, and SNPs&GO. “S2 Appendix” shows the 
results of “PHD-SNP, PMut, and SNPs&GO" when these 40 joined deleterious nsSNPs (declared by Sift, 
Polyphen-2, I-Mutant 3.0, PROVEAN and SNAP2) were submitted to them. Figure 5  shows that All three 
tools, i.e., PhD-SNP, PMut, and SNPs&GO display the result in the form of neutral and disease-causing 
mutations. 
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1. rs983885759 L120Q Damaging 0 
Probably 
Damaging 

1 Decrease 
-
1.44 

Deleterious 
-
3.968 

Effect 69 

2. rs749495284 F131L Damaging 0 Probably 
Damaging 

0.999 Decrease -
1.09 

Deleterious -
3.786 

Effect 67 

3. rs766849295 Y155C Damaging 0 
Probably 
Damaging 1 Decrease 

-
0.72 Deleterious 

-
5.529 Effect 53 

4. rs1034616967 D156Y Damaging 0.03 
Probably 
Damaging 

0.93 Decrease 
-
0.56 

Deleterious 
-
2.689 

Effect 40 

5. rs141366046 V190G Damaging 0.01 Probably 
Damaging 

0.695 Decrease -
2.74 

Deleterious -
2.575 

Effect 69 

6. rs1267000381 V213M Damaging 0 
Probably 
Damaging 1 Decrease 

-
0.28 Deleterious -2.6 Effect 79 

7. rs1273219762 C283Y Damaging 0.01 Probably 
Damaging 

0.949 Decrease -
1.79 

Deleterious -
4.455 

Effect 61 

8. rs765678030 E323G Damaging 0.01 
Probably 
Damaging 0.969 Decrease 

-
1.63 Deleterious 

-
3.883 Effect 50 

9. rs868847993 Y325H Damaging 0 
Probably 
Damaging 0.605 Decrease 

-
0.82 Deleterious 

-
3.158 Effect 74 

10. rs763377384 D330N Damaging 0.03 Probably 
Damaging 

0.605 Decrease -
2.08 

Deleterious -
3.695 

Effect 67 

11. rs763184576 D332G Damaging 0.03 
Probably 
Damaging 0.999 Decrease 

-
1.05 Deleterious 

-
5.239 Effect 73 

12. rs748635133 G423E Damaging 0.05 
Probably 
Damaging 

0.998 Decrease -1 Deleterious 
-
4.381 

Effect 69 

13. rs747509282 R445Q Damaging 0 Probably 
Damaging 

1 Decrease -0.4 Deleterious -
2.985 

Effect 69 

14. rs759079385 R451C Damaging 0.01 
Probably 
Damaging 1 Decrease 

-
1.02 Deleterious 

-
3.618 Effect 24 

15. rs771480219 E492V Damaging 0 
Probably 
Damaging 

1 Decrease 
-
1.62 

Deleterious 
-
6.529 

Effect 79 

16. rs1158433317 L512S Damaging 0.05 Probably 
Damaging 

0.977 Decrease -
0.79 

Deleterious -
2.526 

Effect 67 

17. rs866664638 P515T Damaging 0 
Probably 
Damaging 1 Decrease 

-
0.46 Deleterious 

-
7.467 Effect 66 

18. rs138201027 W516G Damaging 0 Probably 
Damaging 

1 Decrease -
1.62 

Deleterious -10 Effect 81 

19. rs1331702695 F526V Damaging 0.01 
Probably 
Damaging 0.999 Decrease 

-
0.62 Deleterious 

-
5.333 Effect 67 

20. rs143324585 V531G Damaging 0 
Probably 
Damaging 

1 Decrease 
-
1.93 

Deleterious 
-
6.533 

Effect 76 

21. rs1237070816 E533K Damaging 0 Probably 
Damaging 

1 Decrease -
2.21 

Deleterious -
3.733 

Effect 88 

22. rs148379933 E539K Damaging 0.01 
Probably 
Damaging 1 Decrease 

-
2.35 Deleterious -3.3 Effect 79 

23. rs139494954 M558R Damaging 0 
Probably 
Damaging 

0.935 Decrease 
-
1.61 

Deleterious -4.5 Effect 46 

24. rs143400770 L561P Damaging 0.01 Probably 
Damaging 

1 Decrease -
0.02 

Deleterious -
5.332 

Effect 75 
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Figure 5. Table of 40 COMMON nsSNPs DECLARED DAMAGED BY SIFT, Polyphen-2,I-
Mutant3.0, PROVEAN  & SNAP2 

• PHD-SNP predicts 26 out of 40 mutations as Diseased and 14 as neutral mutations. 
• PMut predicts 24 out of 40 as diseased and 16 as neutral mutations. 
• SNPs&GO predicts 40 out of 40 mutations have disease effects. 

That 21 nsSNPs which are bold, are the common diseased mutations declared by all the above three 
tools. 

Table 3. LIST OF nsSNPs predicted as Diseased by PHD-SNP , PMut and SNPs&GO 

 

25. rs139500527 W563G Damaging 0 Probably 
Damaging 

1 Decrease -
2.32 

Deleterious -
12.133 

Effect 88 

26. rs772068738 P595L Damaging 0.02 
Probably 
Damaging 0.813 Decrease 

-
0.49 Deleterious -3.915 Effect 35 

27. rs775051210 S608C Damaging 0.01 Probably 
Damaging 

1 Decrease -
2.04 

Deleterious -3.279 Effect 26 

28. rs562956970 L657Q Damaging 0 
Probably 
Damaging 0.939 Decrease 

-
1.05 Deleterious -5.1 Effect 69 

29. rs202119986 A658T Damaging 0 
Probably 
Damaging 1 Decrease -2 Deleterious -3.389 Effect 50 

30. rs750578651 R661Q Damaging 0 Probably 
Damaging 

1 Decrease -
0.93 

Deleterious -3.581 Effect 84 

31. rs1172128543 H686R Damaging 0.01 
Probably 
Damaging 1 Decrease 

-
1.32 Deleterious -4.85 Effect 72 

32. rs775195256 E693G Damaging 0.01 
Probably 
Damaging 

1 Decrease 
-
0.73 

Deleterious -3.942 Effect 67 

33. rs1358369644 D697H Damaging 0.02 Probably 
Damaging 

0.998 Decrease -
1.11 

Deleterious -4.5 Effect 72 

34. rs3092903 D697E Damaging 0.04 
Probably 
Damaging 1 Decrease 

-
0.72 Deleterious -2.796 Effect 16 

35. rs1363146373 Y771C Damaging 0.01 Probably 
Damaging 

0.950 Decrease -
1.81 

Deleterious -4.943 Effect 59 

36. rs754507551 P786S Damaging 0.03 Probably 
Damaging 

0.995 Decrease -
0.75 

Deleterious -2.688 Effect 14 

37. rs1467492987 P789H Damaging 0 
Probably 
Damaging 0.997 Decrease 

-
0.66 Deleterious -3.802 Effect 39 

38. rs1158706854 P796L Damaging 0 Probably 
Damaging 

0.485 Decrease 0 Deleterious -5.221 Effect 19 

39. rs187912365 R798W Damaging 0 
Probably 
Damaging 1 Decrease 

-
1.21 Deleterious -3.986 Effect 75 

40. rs1394610552 G836D Damaging 0.05 
Probably 
Damaging 

1 Decrease 
-
1.36 

Deleterious -3.289 Effect 46 

Sr # RSID’s AA 
Change 

PHD-SNP 
Prediction RI PMut 

Prediction Score SNPs&GO 
Prediction RI 

1.  rs983885759 L120Q Disease 4 Disease 0.52 Disease 8 

2.  rs749495284 F131L Disease 4 Disease 0.79 Disease 9 

3.  rs766849295 Y155C Neutral 1 Neutral 0.49 Disease 9 

4.  rs1034616967 D156Y Neutral 7 Neutral 0.16 Disease 7 

5.  rs141366046 V190G Neutral 0 Disease 0.62 Disease 9 

6.  rs1267000381 V213M Disease 3 Neutral 0.43 Disease 9 

7.  rs1273219762 C283Y Disease 5 Disease 0.63 Disease 9 

8.  rs765678030 E323G Neutral 2 Neutral 0.48 Disease 7 
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9.  rs868847993 Y325H Neutral 5 Disease 0.62 Disease 8 

10.  rs763377384 D330N Neutral 5 Neutral 0.14 Disease 7 

11.  rs763184576 D332G Disease 7 Disease 0.82 Disease 9 

12.  rs748635133 G423E Disease 3 Neutral 0.21 Disease 8 

13.  rs747509282 R445Q Disease 7 Disease 0.62 Disease 9 

14.  rs759079385 R451C Disease 4 Neutral 0.24 Disease 9 

15.  rs771480219 E492V Disease 7 Disease 0.82 Disease 10 

16.  rs1158433317 L512S Neutral 2 Neutral 0.34 Disease 9 

17.  rs866664638 P515T Disease 6 Disease 0.81 Disease 9 

18.  rs138201027 W516G Disease 9 Disease 0.7 Disease 10 

19.  rs1331702695 F526V Disease 9 Neutral 0.48 Disease 9 

20.  rs143324585 V531G Disease 8 Disease 0.77 Disease 10 

21.  rs1237070816 E533K Disease 8 Disease 0.82 Disease 10 

22.  rs148379933 E539K Disease 5 Disease 0.66 Disease 10 

23.  rs139494954 M558R Disease 7 Disease 0.62 Disease 6 

24.  rs143400770 L561P Disease 8 Disease 0.7 Disease 10 

25.  rs139500527 W563G Disease 9 Disease 0.82 Disease 9 

26.  rs772068738 P595L Neutral 4 Neutral 0.43 Disease 7 

27.  rs775051210 S608C Neutral 3 Neutral 0.47 Disease 8 

28.  rs562956970 L657Q Disease 9 Disease 0.73 Disease 10 

29.  rs202119986 A658T Disease 6 Disease 0.53 Disease 9 

30.  rs750578651 R661Q Disease 9 Disease 0.84 Disease 10 

31.  rs1172128543 H686R Neutral 1 Neutral 0.26 Disease 8 

32.  rs775195256 E693G Disease 3 Neutral 0.32 Disease 9 

33.  rs1358369644 D697H Disease 3 Disease 0.63 Disease 9 

34.  rs3092903 D697E Disease 1 Disease 0.56 Disease 8 

35.  rs1363146373 Y771C Neutral 0 Disease 0.6 Disease 9 

36.  rs754507551 P786S Neutral 3 Neutral 0.3 Disease 8 
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4.1. Results of Consurf Server  
The role of evolutionary information is much more vital as it is used in finding out those mutations. 

Which might give rise to detrimental effects on human health. For this, all that common diseased. 
Mutations declared by PHD-SNP, PMut and SNPs&GO were submitted into the consurf web server in 
order to estimate their evolutionary conservation scores because diseased nsSNPs located at Conserved 
regions are incredibly high risk diseased to the protein's structure and function than nsSNPs located in 
non-conserved regions. Evolutionary scores of above 21 diseased nsSNPs are being calculated from the 
consurf Server as Shown in Figure 5, and then their results were displayed in "S3 Appendix." The following 
Legend scale describe the conversation scale used in Figure 5. 

In consurf output, color shows the evolutionary conservation. Range from 1-4 shows variability in 
Conservation is indicated by blue. Range from 5-6, shows average protection and It is indicated by white. 
Range from 7-9 shows conservation and is characterized by purple. The residue (e) Means exposed, (b) 
means buried,(f) means functional, i.e., highly conserved and exposed, (s) means Structured, i.e., highly 
conserved and buried, and (x) means insufficient data. The black bold Downward arrows represent. 

L120Q,F131L,C283Y,D332G,R445Q,E492V,P515T,W516G,V531G,E533K,E539K,M558RL561P 
,W563G,L657Q,A658T,R661Q,D697H,D697E,P796L and R798W amino acid mutations of SNPs i.e. 
rs983885759,rs749495284,rs1273219762,rs763184576,rs747509282,rs771480219,rs866664638,rs1 
38201027,rs143324585,rs1237070816,rs148379933,rs139494954,rs143400770,rs139500527,rs562 
956970,rs202119986,rs750578651,rs1358369644,rs3092903,rs1158706854 and rs187912365 
respectively.) 
From Table 5, Residue (e) shows exposed, (b) shows buried,(f) shows functional i.e. highly 

conserved and exposed, (s) shows structured, i.e., highly conserved and buried. Conservation scores from 
1-4 means variable, 5-6 means intermediate, and 7-9 mean highly. Conserved scores. 

From Figure 5 and “S3 Appendix”, results can be concluded that out of 21 highly-risk diseased SNPs, 
19 are located on conserved regions(Score:7-9) while remaining two mutations i.e. L120Q, L561P Having 
scored 4 and 5, respectively, are located in non-conserved regions. Appendix S3, the The conservation score 
of conserved mutations is shown in bold. This means that these 19 conserved mutations are much more 
damaging to the function and structure of the Rb1 protein. 

 

37.  rs1467492987 P789H Neutral 0 Neutral 0.5 Disease 9 

38.  rs1158706854 P796L Disease 3 Disease 0.81 Disease 10 

39.  rs187912365 R798W Disease 3 Disease 0.67 Disease 9 

40.  rs1394610552 G836D Neutral 2 Neutral 0.5 Disease 9 
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Figure 6. The output of Consurf by the uniRef90 Protein database 
 

Table 4. Conservation Profile of High Risk nsSNPs in Rb1 by UniRef-90 

SR # Rsid’s 
Residue   & 

Position 

Conservation 

Scores 
Function 

1.  rs983885759 L120Q 4 B 

2.  rs749495284 F131L 7 B 
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4.2. Results of Project Hope 
The 19 conserved mutations identified by the Consurf Server were submitted to Project HOPE to 

obtain the 3D protein structure and the physical properties of the amino acids. HOPE concluded that, in 
many cases, the size of the mutant residue was smaller than the wild-type residue. Observations were 
made in SNPs with rsIDs including rs749495284, rs763184576, rs747509282, rs771480219, rs138201027, 
rs143324585, rs139500527, and rs750578651, which impact positions F131L, D332G, R445Q, E492V, W516G, 
V531G, W563G, and R661Q, respectively. Conversely, in other SNPs such as rs1273219762, rs1237070816, 
rs148379933, rs139494954, rs562956970, rs202119986, rs1358369644, rs3092903, rs1158706854, and 
rs187912365 at positions C283Y, E533K, E539K, M558R, L657Q, A658T, D697H, D697E, P796L, and R798W, 
the size of the mutant residue exceeded that of the native residue. 

Regarding charge differences, in many SNPs, such as rs763184576, rs771480219, and rs1358369644 
(positions D332G, E492V, and D697H), the wild-type residue was negatively charged, while the mutant 
residue was neutral. The wild-type residue had a positive charge for SNPs like rs750578651 and 
rs187912365 (positions R661Q and R798W), while the mutant residue was neutral. In some cases, such as 
rs1237070816 at position E533K, the wild-type residue was negatively charged, while the mutant had a 
positive charge. In SNP rs148379933 at position E539K, the wild-type residue had a negative charge, while 
the mutant residue had a positive charge. In SNP rs139494954 at position M558R, the wild-type residue 
had a neutral charge, but the mutant residue had a positive charge. 

Regarding hydrophobicity, the wild-type residue was more hydrophobic than the mutant residue 
in several SNPs, including rs866664638, rs138201027, rs143324585, rs139494954, rs139500527, rs562956970, 
and rs202119986 at positions P515T, W516G, V531G, M558R, W563G, L657Q, and A658T. Conversely, the 
mutant residue had higher hydrophobicity than the wild-type residue in SNPs such as rs771480219 and 
rs187912365 at positions E492V and R798W. The protein structures of these mutations, along with the 
amino acid changes for each nsSNP, are shown in Table 6. 

3.  rs1273219762 C283Y 8 F 

4.  rs763184576 D332G 9 F 

5.  rs747509282 R445Q 9 F 

6.  rs771480219 E492V 9 F 

7.  rs866664638 P515T 9 S 

8.  rs138201027 W516G 9 S 

9.  rs143324585 V531G 9 S 

10.  rs1237070816 E533K 9 F 

11.  rs148379933 E539K 7 E 

12.  rs139494954 M558R 8 B 

13.  rs143400770 L561P 5 B 

14.  rs139500527 W563G 9 S 

15.  rs562956970 L657Q 8 B 

16.  rs202119986 A658T 9 B 

17.  rs750578651 R661Q 9 F 

18.  rs1358369644 D697H 8 F 

19.  rs3092903 D697E 8 F 

20.  rs1158706854 P796L 9 F 

21.  rs187912365 R798W 8 F 
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Table 5. Results of Project Hope 

SNP ID 3D Structure Amino Acid 
Change 

rs749495284 
 
 
 
 

 
 

 
  

 
 
Phenylalanine  
Changed to 
Leucine at 
position 131. 

rs127321976
2 

                                         

 

 
Cysteine  
Changed to 
Tyrosine at 
position 283. 
 
 
However the 3-D 
structure or 
modelling 
template is being 
missed on hope 
for unknown  
reason but 
administrator is 
being apprised in 
this regard.                                      

rs763184576 

 

Aspartic acid 
Changed to 
Glycine at position 
332. 

  Mutates into 
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rs747509282 

 

 

Arginine Changed 
to  Glutamine at 
position 445. 

 

rs771480219 

 

Glutamic Acid  
Changed to  
Valine at position 
492. 

rs866664638 

 

Proline Changed  
to Threonine at 
position 515. 

rs138201027 

 

Tryptophan 
Changed to  
Glycin at position 
516. 
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rs143324585 

 

Valine Changed to  
Glycine at position 
531. 

rs123707081
6 

 

Glutamic Acid 
changed to  
Lysine at position 
533. 

rs148379933 

 

Glutamic Acid 
changed to  
Lysine at position 
539. 

rs139494954 

 

 
  

Methionine 
Changed to 
Arginine at 
position 558. 
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rs139500527 

 

Tryptophan 
Changed to  
Glycine at position 
563. 

 

rs562956970 

 

Leucine Changed 
to  Glutamine at 
position 657. 

rs202119986 

 

Alanine mutated 
to  Threonine at 
position 658. 

rs750578651 

 

Arginine Changed 
to  Glutamine at 
position 661. 
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rs135836964
4 

 

Aspartic Acid 
Changed to 
Histidine at 
position 697. 

rs3092903 

 

 

Aspartic acid to 
Glutamic acid at 
position 697. 

rs115870685
4 

                                                     

                

Proline Changed 
to  Leucine at 
position 796. 

Protein structure 

can’t be generated 

by hope because 

of lack of 

structural 

information. 

 
 

  Mutates into 
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Therefore, after giving protein structures of 19 mutations, Project Hope concluded that out of 19, 17 
mutations i.e. D332G, R445Q, E492V, P515T, W516G, V531G, E533K, E539K, M558R, W563G,L657Q, A658T, 
R661Q, D697H, D697E, P796L and  R798W are responsible for Rb1 protein Damage. Just two mutations, 
i.e., F131L and C283Y, are not the sources of protein damage. 

 
5. Discussion  

Due to technological advances, the number of recognized genomic variants (mostly single 
nucleotide polymorphisms (SNPs)) in the human genome is growing rapidly. In population genetics and 
molecular biology, it is of great interest to separate deleterious SNPs from quasi-neutral ones. Here, we 
depict an in-vitro analysis identifying functional SNPs within the Rb1 gene. The keyThe key novelty of this 
work is to identify more deleterious SNPs and perform structural analysis on them. 

Rb1 is a tumor suppressor gene that regulates cell growth by inhibiting cells from undergoing 
uncontrolled division. However, mutations in this gene sometimes cause dramatic problems, such as 
retinoblastoma (eye cancer that affects very young children), some forms of breast cancer and melanoma, 
a type of skin cancer. These disorders are such a threat that knowing how these mutations come about is 
crucial. 

This research systematically identifies functional SNPs in the Rb1 gene and investigates how these 
SNPs affect protein function and structure, ultimately leading to diseases. Information regarding the Rb1 
SNP was acquired from the NCBI dbSNP database. 36,358 SNPs were identified, comprising 345 in the 3' 
UTR region, 65 in the 5' UTR, and the remainder in the intronic region. 

 Among these coding SNPs, 199 were synonymous and 450 non-synonymous (425 missense, five 
nonsense and 20 frameshift). The missense mutations were particularly interesting in this study because 
they more directly modulate Rb1 protein function and structure. 

It employed bioinformatics tools (SIFT, PolyPhen-2, I-Mutant 3.0, PROVEAN and SNAP2) and the 
analysis showed 40 common deleterious SNPs. Of the 40 SNPs analyzed, PHD-SNP2, PMut and SNPs&GO 
determined that 21 mutations are disease-causing. The others were analyzed by Consurf Server for their 
conservation in their area (as the more harmful a mutation can be if it is conserved). Analysis indicated 
that 19 out of 21 mutations were within conserved regions. Project HOPE, in the follow-up work, to analyze 
the impact of these 19 mutations on protein structure and function. Protein structure analysis revealed that 
17 out of the 19 mutations were highly deleterious, resulting in severe damage to protein. The three-
dimensional structure of amino acids has been analyzed regarding hydrophobicity, charge, size and 

rs187912365 

                                      

 

Arginine Changed 
to Tryptophan at 
position 798. 

  Mutates into 
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flexibility. All tools employed confirmed that the impact of these 17 mutations on the structural and 
functional integrity of Rb1 was severe. 

In short, these 17 mutations are very important for the diagnosis and therapy of both genetic 
diseases, such as retinoblastoma and its related disorders. This understanding serves as a foundation for 
advancing personalized medicine in these individuals. The renal development pathway is sufficiently 
delicate that any disruption in Rb1 protein function can significantly affect related disease pathways, 
highlighting the necessity for early detection and targeted intervention. 

 
6. Conclusion  

In this study, the in-silico analysis was performed using several bioinformatics tools to determine 
the deleterious mutations in the Rb1 gene associated with diseases like retinoblastoma. We studied 36,358 
SNPs obtained from dbSNP, NCBI and of them, 844 were coding SNPs, 425 missense, 5 nonsense and 20 
frameshifts. We employed a ten-step method utilizing the following bioinformatics tools to ensure high 
reliability and correctness of the results: SIFT, PolyPhen-2, I-Mutant 3.0, PROVEAN, SNAP2, PHD-SNP, 
PMut, SNPs&GO, Consurf, and Project HOPE. This methodology allowed us to identify and select 17 
pertinent nsSNPs that directly influence the structure and function of the Rb1 protein. These results suggest 
that using multiple computational methods for SNP analysis is important, specifically for determining the 
pathogenicity and structural effect of the SNPs. The fact that SNPs are located in conserved regions and 
the results of the analysis with Consurf Server prove that SNPs can be considered as having a deleterious 
effect. The last assessment, made through Project HOPE, demonstrated that these mutations affect the 
physical characteristics of the Rb1 protein, including hydrophobicity, charge, size, and flexibility, in a 
pathogenic manner. This study identifies 17 pathogenic mutations (F131L, C283Y, D332G, R445Q, E492V, 
P515T, W516G, V531G, E533K, E539K, M558R, W563G, L657Q, A658T, R661Q, D697H, D697E, P796L, and 
R798W) which will be useful These findings not only help to elaborate the molecular basis of Rb1 gene 
mutation but also provide a direction for the personalized medicine and treatment. Since retinoblastoma 
is still a global concern, our study could be a significant source of information on genetic testing and 
treatment. 

 
7. Abbreviations 

The following table 7, defines all the abbreviations used in our study. 
Table 3. Abbreviations 

Abbreviation Full Form 
SNPs Single Nucleotide Polymorphisms 
Rb1 Retinoblastoma 1 gene 

NCBI National Center for Biotechnology Information 
UTR Untranslated Region 

nsSNP Non-synonymous Single Nucleotide Polymorphisms 
SIFT Sorting Intolerant From Tolerant 

PROVEAN Protein Variation Effect Analyzer 
SNAP2 Screening for Non-Acceptable Polymorphisms 

PHD-SNP Predictor of Human Deleterious Single Nucleotide Polymorphism 
PMut Pathogenic Mutations Prediction 

SNPs&GO Single Nucleotide Polymorphisms and Gene Ontology 
HOPE Have (y)Our Protein Explained 
SVM Support Vector Machine 

GeneMANIA Gene Multiple Association Network Integration Algorithm 
I-Mutant 3.0 A software predicting protein stability upon mutation 

dbSNP Database for Single Nucleotide Polymorphisms 
Consurf A server that estimates evolutionary conservation scores 

3D Three-Dimensional 
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