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________________________________________________________________________________________________________ 
Abstract: The objective of researchers and developers has always been to attain superior 
performance for their computing applications. In this regard, the use of Graphic Processing Unit 
(GPU) is very common and initially it is used to accelerate the performance of graphic applications. 
The success of GPU has attracted researchers and they have shown keen interest to use GPU 
acceleration for regular applications. However, there have been many studies in recent past claiming, 
even though the application is well suited for parallelism it is not guaranteed to run faster on the 
GPU. In this this paper we compare performance of commonly used OpenCL applications both on 
CPU and GPU platforms. We measure the execution time of each application on both platforms and 
investigate why an application performed better on a particular platform. In this regard, we analyze 
the source code of each application and identify program features which contributes towards the 
better performance on a particular platform. The study has identified that loop unrolling and data 
dimensionality are crucial program features that can be leveraged to utilize the parallel processing 
capabilities of a GPU platform. We find that when maximum loop unrolling is used with two-
dimensional input data, the 2D Convolution application executes around 20 times faster on GPU. 
Similarly, when the level of loop unrolling reduces, the performance gain also decreases on GPU. 
Ultimately, in the absence of loop unrolling along single-dimensional input data, CPU performs 
better. In this case, the ATAX application executes around 9x faster on CPU as compared to GPU.  
 
Keywords: Heterogeneous Computing; CPU/GPU; Loop Unrolling; GP-GPU; OpenCL. 

 
1. Introduction 

Engineers have often sought to build efficient computer systems to solve complicated computing 
problems as quickly as possible. In parallel computing world, apart from multi-core computer systems, 
another promising technology to improve the application performance is GPU. A GPU contains many 
small computing units where processing tasks can be distributed in parallel to improve the application 
performance [1]. Initially, GPUs are often used to create computer graphics, to do jobs that were previously 
handled by CPUs [2]. After the success of GPU for graphics applications, the attention has been diverted 
to use GPU for general purpose computing i.e., General Purpose Graphical Processing Unit (GP-GPU). GP-
GPUs have a significant impact on ground-breaking scientific research, and many high performance 
computing (HPC) servers make use of several GP-GPUs to achieve supercomputing levels [2][3].  
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The success of GPU has given rise to a novel computer architecture paradigm known as discrete 
heterogeneous architecture [4][5]. In this architecture, a combination of distinct processing units, such as 
CPUs, GPUs, FPGAs, and specialized accelerators, are integrated into a single system [6]–[8]. Each 
processing unit is optimized for specific types of tasks, leveraging their unique strengths. CPUs excel at 
sequential processing and managing complex tasks [9], GPUs are adept at parallel processing and 
accelerating data-intensive operations [10], FPGAs provide flexibility through customizable logic for 
specific workloads, and specialized accelerators target particular applications like AI and machine 
learning[11].  

Although GP-GPUs excel in parallel computing due to their vast number of cores, which run at lower 
rates than CPUs, but are more appropriate for parallel work load distribution. However, on the other hand, 
it has been observed in the literature [12][13][14], that although an application may be well suited for 
parallel processing, using a GPU does not always guarantee faster processing speed. In this situation, for 
a given parallel application, one may wonder which platform should be used for the faster execution of 
that application. An application may execute faster on either a multi-core CPU or a GPU platform. In other 
words, which architecture (CPU or GPU) is better for a given general-purpose application? To address this 
question, it is necessary to conduct an application’s code analysis and identify the factors that can impact 
the performance of the application on a particular platform. 

In our work we have selected Open Computing Language (OpenCL) [15] based applications for 
performance study both on CPU and GPU architectures. The OpenCL is a platform independent 
programming framework which is widely used by the programming community [16] and the part of 
Polybench suits [17]. The study involves a performance comparison of 11 selected OpenCL applications on 
both CPU and GPU architectures. To make a fair comparison, we have selected applications from different 
domains such as image processing and data mining. Furthermore, some selected applications are 
processing intensive while others are memory intensive. Then we execute each application both on CPU 
and GPU platforms and compare execution times on both platforms. In this way we figure out which 
platform is better suited for that application (with lower execution time indeed).  

Our performance comparison reveals that there is not a single winner (CPU or GPU) for these 
applications since some applications executes faster on CPU while others run faster on GPU. Our results 
indicate that it is not straight forward to decide the suitable parallel platform for a specific application. It 
is well known that the real benefit of either a multi-core CPU or a GPU platform can only be exploited 
when we enable parallel processing through programming [1]. This led us to a detailed examination of 
selected OpenCL applications code. We analyze how much a particular application exploits GPU 
acceleration and is there any possibility that the result is dependent on the developers’ programming skills 
rather than the hardware. In this way, we learn not only the better platform for an application but we also 
learn how an application should be properly coded in order to exploit the parallelism of GPU platform. 
Our code analysis reveals the software features for these selected applications that affect the execution time 
on CPU and GPU platforms. In this regard, we find that loop unrolling and data dimensionality are 
significant factors that affect program’s performance when running on either platform. 

In summary, the aim of this study is addressing the following research questions: 
• Which selected OpenCL applications execute faster on GPU and which applications execute faster on 

CPU? 
• Which software characteristics have a significant impact on an application's execution time when 

running on CPU and GPU platforms? 
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To be more specific, the performance of the following six selected applications are found lower on 
GPU: ATAX, BICG, MVT, Gesummy, Correlation and Covariance. Our code analysis reveals that the lower 
performance is the result of poor GPU hardware exploitation. For instance, there is only single dimensional 
input data for these six applications along very limited (or even 0 in case of ATAX) loop unrolling 
capabilities which make it hard to distribute the work load in parallel among processing units of a GPU. 
We believe that the performance of these application can be improved on GPU by addressing these issues. 
According to our knowledge, there is no existing work that compare the performance of OpenCL 
applications on CPU and GPU platforms and thus we consider this as our main contribution. We justify 
why a specific platform is suitable for a specific application which is not evident from the current litrature.  

The rest of this paper is structured as follows: Section 2 discusses the related work, while Section 3 
provides information on our selected applications along criteria we have used to evaluate performance. In 
Section 4, we present the OpenCL applications performance results on both CPU and GPU platforms along 
a follow up discussion based on source code analysis. Lastly, in Section 5, we draw conclusions about the 
paper and share our perspectives on future research directions 

2. Related Work   
The performance comparison of CPU and GPU platforms can be frequently found in literature. S.Kim 

et al [18] evaluated the performance of the HiBench benchmark suite on an integrated Intel HD Graphics 
4600 GPU. They aimed to determine if the GPU could accelerate MapReduce tasks in an Apache Hadoop 
data center cluster system. The researchers observed that integrated GPU outperformed CPU with a 
substantial speed-up. 

F Li et al [19] conducted experiments on different architectures to evaluate various programs in the 
BLAS application suite, including GEMM and GEMV. The researchers used three types of CPUs, namely 
Xeon E5-2620v3, Intel i7-7700, and i5-7500, and two types of GPUs, GTX1070 and GTX1080 Ti. The findings 
indicated that the Core i7-7700 outperformed the Xeon E5-2620v3, yet both CPUs were outperformed by 
the GTX1080 Ti and GTX1070 GPUs. As the matrix dimension increased in GEMM and GEMV, the 
processing time increased on both architectures, but the GPU still outperformed the CPU. 

 Z.Huang et al [20] compared the CPU and GPU performance for matrix multiplication programs, 
which are known to be both popular and time-consuming computing processes. The researchers analyzed 
the efficiency of GPU computing for various data scales and development methods. They used NVIDIA 
Tesla P100 GPU and Intel Xeon E5-2640 CPU for the experiments. The results showed that the CPU 
outperformed the GPU for small input data, likely because the matrix size was small and the degree of 
parallelism in the GPU was not significant. Consequently, several computation units of GPU remained 
underutilized. However, as the matrix size increased, the GPU was fully utilized and outperformed the 
CPU. 

V.Saahithyan et al [21] investigated various fundamental image processing algorithms performance 
on both CPU and GPU, using images of different dimensions for testing. The researchers observed that the 
GPU's effectiveness in image processing problems is heavily influenced by the size and nature of the 
problem. As the size of matrix increase, GPU outperformed the CPU in terms of performance, nevertheless, 
this advantage was limited to a specific matrix size. In contrast, the CPU consistently outperformed under 
varying matrix sizes. The research concludes that determining the feasibility of utilizing a GPU for image 
processing tasks is contingent on the problem size and the particular algorithms employed. 

Syberfedlt et al [22] use NVIDIA Geforce 980 GPU and  intel i7-4790k CPU for experiments and their 
results indicated that the level of data and the number of parallel instances have a significant impact on 
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the efficiency of a platform. The CPU is more effective than GPU for little quantities of data, but only up to 
a certain number of simultaneous instances. Regardless of the quantity of data processed, the GPU will 
always win over the CPU when there are a high number of parallel instances. 

Peitao Song et al [23] explore the potential of modern GPUs by developing a 2D MOC application that 
takes advantage of the high parallelization capabilities of the MOC method. The authors investigate three 
levels of parallelization: ray-level, group-energy-level, and polar-angle-level. They compare the 
performance of NVIDIA GPU with that of the Intel Xeon E5-2690 v4 CPU in both serial and parallel 
computations using 12 CPU cores. The results show that the GPU outperforms the CPU, achieving 
speedups of over 55 times and 5 times in comparison to serial and parallel CPUs, respectively. 

Chenyang Zhang [23] conducts a performance comparison of the AMD Ryzen 5 2400G integrated 
GPU architecture with a discrete Core i3-8300 CPU and a discrete GTX 1080 GPU architecture using the 
iMLBench machine learning benchmark. The findings reveal that the integrated architecture has an 
average performance that is 7.71% worse than the discrete GPU in certain machine learning applications. 
However, the integrated architecture performs better in machine learning tasks that have high 
transmission occupancy, like KNN and BP (Back propagation), due to its zero-copy optimization. It is 
worth noting that the BP kernel has numerous branches, which can lead to a decrease in GPU performance.  

In recent years, the machine learning models are also used to predict the faster platform (CPU or GPU) 
for a given application [9][24][25]. In these studies, software features are extracted from an application and 
then correlation analysis is performed to select important features. The machine learning model is trained 
on selected features to predict the application’s performance (i.e., execution time) on both platforms. In 
this regard, different machine learning algorithms are used in different studies. For instance, the work 
presented in [9] compares the prediction accuracy of random forest, decision tree and naive bayes machine 
learning algorithms whereas in [24], KNN, random forest , Linear regression and gradient boosting are 
compared.  

Paulinoet al [26] evaluate the performance of OpenCL code on FPGA as a result of using a variety of 
coding techniques, such as the use of single-task kernels combined with data vectorization, combined with 
the use of local memories, and burst accesses to local memory. This study examines these facets using the 
widely recognized k-means algorithm. Beginning with a sequential OpenCL implementation of the 
algorithm, make small adjustments, assess each version's performance and power use, and repeat as 
necessary. Study shows that the FPGA provides speedups up to 1.54 times for four scenarios and energy 
savings up to 80% in all cases while running the identical OpenCL code on a 4 GHz Intel i7-6700K CPU. 

Johnston et al [27] introduces the Architecture Independent Workload Characterization (AIWC) tool 
as a means to characterize OpenCL kernels based on architecture-independent features. This tool's 
application is integrated into a methodology aimed at predicting the execution times of accelerators. The 
method entails leveraging AIWC features to create a model with the ability to predict execution times for 
a set of 37 computational kernels on 15 varied devices, including CPUs, GPUs, and MIC architectures. The 
predictive accuracy of this model is impressive, showing only a minor average deviation of 1.2% from 
experimentally measured run-times. Additionally, the predicted execution time discrepancies range from 
9 microseconds to 1 second based on problem size.  

Breyer et al [28] conducts a comparative analysis of OpenMP, CUDA, OpenCL, and SYCL, including 
hipSYCL and DPC++ implementations. They assess usability, performance, and portability across diverse 
hardware like GPUs from NVIDIA, AMD, and Intel, and CPUs from AMD and Intel. The main contribution 
of this work is Parallel Least Squares Support Vector Machine (PLSSVM) library that implements backends 
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for the four aforementioned programming frameworks. By using this library, authors identify the optimal 
framework for scientific computing and AI workloads based on the target hardware.  

In summary, the previous studies have demonstrated that speedup on GPU can be achieved for 
certain programs, but it is not guaranteed that the GPU will always be faster. The performance of a program 
depends on the particular constraints of that program, which can determine whether the GPU or the CPU 
is better suited for running it. We have also seen that different machine learning predictors are used to find 
a faster platform. However, it specifically emphasizes extracting and analyzing only the features of the 
host programs, leaving out the extraction of kernel program features. The kernel programs are executed 
within a specific architecture and play a crucial role in overall system performance [29][30].  

We believe that incorporating kernel program features alongside host program features could provide 
a more holistic understanding of the architecture's performance characteristics and enable a more 
comprehensive comparison among different programs. In this context we analyze the source code of 
OpenCL applications by looking at the features of both host and kernel programs. We believe that our 
thorough source code analysis is useful from two perspectives, Firstly, we understand why a particular 
platform is better suited for a specific application. Secondly, the limitation of an application is identified 
that hinders its performance on a particular platform. For instance, a program with too many dependent 
instructions cannot perform better on a GPU platform (due to limited exploitation of GPU parallelism). 
The identification of a performance bottleneck is useful for application developers to eliminate the 
bottleneck in the next version of that application (with improved expected performance of course).  

 
3. OpenCL Application Selection and Methodology 

In this section we present the process of our application selection and performance analysis. We select 
different type of applications from the most famous and widely used Polybench suite [17]. The appropriate 
application selection is crucial for the fair comparison. For instance, selecting only those applications which 
are apparently suitable for one particular platform does not seem a fair comparison. It is generally believed 
that computationally intensive applications are better suited to execute on CPU [31]–[34][35] whereas 
memory intensive applications benefit from the GPU  [36]–[39]. Therefore, this study has selected a mix 
of 11 OpenCL applications from diverse domains to ensure a fair comparison between the CPU and GPU.  

The Table 1 shows the selected applications which belong to the different domains of Image 
Processing, Linear Algebra, Data mining and Stencils. It can be noticed that 3 selected applications are 
computationally intensive whereas 6 applications are memory intensive. The remaining two applications 
are both computationally and memory intensive. Based on the assumption that computation intensive 
applications should perform better on CPU and memory intensive should perform better on GPU, 2MM, 
3MM and Gemm should perform better on a CPU whereas 2D-Convoluton, Correlation, Covariance, 
ATAX, Bicg and MVT should perform better on GPU. However, we will see later that results are not in line 
with this assumption and we figure out other factors which actually impact the performance on a particular 
platform. In this regard the code analysis of an application is essential to explore how performance can be 
improved on a parallel hardware. 

The OpenCL applications are executed as benchmark (without any modifications) on both platforms. 
Each OpenCL application consists of two programs: a host program and a kernel program. On a CPU, the 
main control core executes the host program while the remaining cores process the kernel program. 
However, on a GPU, the CPU executes the host program, and the GPU executes the kernel program. It is 
important to mention that OpenCL applications are parallel applications which means that application is 
developed to execute on a parallel platform. Both CPU and GPU are parallel platforms and it is not obvious 
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which platform is better suited for a particular application (and why). The objective of our study is to find 
the answer for this research question. 
3.1. List of Contributions 

After executing each application both on CPU and GPU platforms, we compare their respective 
execution times to find answers of the following questions.  
• Firstly, finding which platform (CPU or GPU) is faster for an application. A platform with less 

execution time is considered faster indeed. We determine faster platform first of all. 
• Secondly, finding why a particular platform is suitable for a particular application. We examine the 

source code of applications and identify the software features that make them well-suited for a 
particular platform. In section 4 (results and discussion), we explore the differences in execution time 
between CPUs and GPUs, and provide an explanation of the software program features that impact 
the performance on CPU-GPU architectures.  

• Thirdly, our study provides a guideline to the application developers by identifying the performanace 
bottleneck which should be fixed to speed up the application either on CPU or GPU platform. 

Table 1. Domain and Applications selected for performance comparison 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The summary of our proposed methodology is shown in Fig 1, firstly select an OpenCL application 

(from a set of applications belonging to different domains) and execute on both CPU and GPU platforms. 
The execution time is measured on both platforms. Then we compare results and determine the better 
platform with less execution time. Finally, we investigate why a particular platform is better suited for an 
application. In this regard, we analyze the source code of that application and find out programing 
parameters which affect the application’s execution time. 

 
4. Result and Discussion  

In this section we present our experiment setup and report our findings. The experimental setup is 
explained in section 4.1. We measure the execution time of 11 selected OpenCL applications on both 
platforms and categorize our results into two cases. In the first case (section 4.2), there are applications 
which perform better on GPU. Then in the second case (section 4.3), there are applications which perform 

Domain Applications Computation 
Intensive  

Memory  
Intensive  

Stencils FDTD-2D ü ü 
Image 
Processing 

2D-Convolution û 
 

ü 
 

Data mining Correlation 
Covariance 

û 
û 
 

ü 
ü 

Linear 
Algebra 

2MM 
3MM 
ATAX 
Bicg 
MVT 
Gemm 
Gesummv 
 

ü 
ü 
û 
û 
û 
ü 
ü 

û 
û 
ü 
ü 
ü 
û 
ü 
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better on CPU. In section 4.4, we investigate through application source code analysis that why an 
application performs better on a particular platform.  

 
Figure 1. Flow of an application’s execution time evaluation on CPU and GPU platforms 

4.1. Experimental Setup 
We use a Linux based computer system equipped with a sixth generation Intel Haswell i7-6700 

processor. The hardware specifications are given in Table 2. The processor includes four cores, operating 
at a clock rate of 3.40 GHz. In addition, a discrete GPU, the NVIDIA GeForce GT 740, was also utilized, 
which includes 384 cores and has a memory bandwidth of 28.8 GB/s. The performance of these applications 
is evaluated on both platforms with varying input sizes. Input sizes are simple floating values, for instance, 
in the 2mm application, the input size is two, which corresponds to a 2 x 2 matrix. The 3MM application 
includes three matrix multiplications (AB, CD, and G = (AB)(C*D)). The ATAX kernel is one of the linear 
algebra kernels, which computes AT time Ax. It takes A as a matrix of M x N and x as the vector of N length. 
The MVT application comprises a matrix-vector multiplication, but with a transposed matrix. Matrix A has 
dimensions of N x N, while vectors y1 and y2 both have a length of N. The input size is gradually increased, 
and the job execution time for each application is measured on both platforms. The application's run time 
is stored in a file. The run time denotes the amount of time that the CPU or GPU utilizes to execute the 
application with the provided input size. 
4.2. Applications execute faster on GPU 

It is observed that the GPU performs better for the 2D Convolution and FDTD-2D applications. The 
results are shown in figure 2 and 3 for 2D Convolution and FDTD-2D respectively. The input size is shown 
on x-axis whereas program execution time is shown on y-axis. We gradually increase the input size and 
measure the effect on the execution time of these applications. In general, we observe that both applications 
execute faster on GPU since the execution time is lower on GPU as shown in figure 2 and 3. However, for 
initial small input sizes the difference is small (few milli-seconds) and not clearly visible, however when 
input size increases the performance difference becomes more evident. For instance, when the input size 
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of 2D Convolution and FDTD-2D is 15500 (figure 2), GPU takes 0.168965 seconds whereas CPU takes 
20.2373 seconds for the execution of the same application. Similar patterns can be found in figure 3. 

Table 2. CPU-GPU Hardware Specifications. 
Device CPU GPU 
Model 

Base Clock 
Boost Clock 
Total Cores 

Memory 
Bandwidth 

Intel Core i7-6700 
3.4 GHz 
4 GHz 

4 
34.1 GB/s 

Nvidia GeForce GTX 740 
0.980 GHz 
1.033 GHz 

384 
28.8 GB/s 

 

Figure 2. CPU-GPU execution time for 2DCONV Application. 
The linear algebra applications, namely 2MM, 3MM, and GEMM, were tested with varying input sizes 

on both the CPU and GPU platforms. The results for these three applications are shown in figure 4, 5 and 
6. Apparently, the pattern of these results looks similar to figures 2 and 3, where the GPU performs better 
when input size increases. However, when we closely analyze these results, we figure out that CPU 
exhibited marginally better for some input sizes in the range of 243 to 729 (but difference is very small and 
negligible). 
4.3. Applications execute faster on CPU 

MVT, BICG, GESMMV are Linear algebra applications and covariance and correlation are data mining 
applications that are executed on GPU and CPU with different input sizes. Figures 7-11 show the results 
for these applications. In all cases, we notice that CPU performs better when input size increases. However, 
for small input sizes the performance of GPU is slightly better (few milli-seconds) which is not negligible 
and not very evident in graphs.  
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Figure 3. CPU-GPU execution time for FDTD-2D application. 

 
Figure 4. 2MM application execution time of CPU-GPU 

 
Figure 5. CPU-GPU execution time for 3MM application. 
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Figure 6. CPU-GPU execution time for GEMM application. 

 
Figure 7. CPU-GPU execution time for MVT application. 

 

Figure 8. CPU-GPU execution time for BICG application. 
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Figure 9. CPU-GPU execution time for GESUMMV application 

 
Figure 10. CPU-GPU execution time for covariance application 

 

 
Figure 11. CPU-GPU execution time for Correlation application. 
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The ATAX application is also tested on CPU and GPU using different input sizes. In this case the CPU 
consistently outperformed the GPU in terms of execution time for all input sizes. Figure 12 presents the 
results, which show that the performance difference between CPU and GPU is insignificant for small input 
sizes. However, as the input size increases, the difference becomes more pronounced. For instance, when 
the input size is 4096, the CPU completes the execution of the ATAX application in 0.018337 seconds, 
whereas the GPU takes 8.756636 seconds to complete the same task. 

 

Figure 12. CPU-GPU execution time for ATAX application 
4.4. Applications execute faster on CPU 

We have conducted experiments to assess the performance of 11 different OpenCL applications on 
both CPU and GPU architectures. The summary of our results is shown in Table 3. It can be noticed that 
there is no clear winner (CPU or GPU) and 5 applications (2D Convolution, FDTD-2D, 2MM, 3MM and 
Gemm) performed better on GPU whereas the remaining 6 applications performed better on CPU. It can 
be observed that GPU is not a winner at all although it has more potential to perform parallel work (with 
384 functional units as compared to 4 CPU cores). Furthermore, in Section 3, we have discussed that 
generally it is believed that computationally intensive applications are better suited for CPU whereas 
memory intensive applications are better suited for GPU. However, our results are different since some 
computationally intensive applications performed better on GPU whereas some memory intensive 
applications performed better on CPU (Table 3). It indicates that there are certainly other important 
programming features which may impact the performance of an application on a parallel platform. This 
leads us to the code analysis of OpenCL applications in order to justify the suitability of an application for 
a particular platform.    

We analyze the source code of both the host and kernel programs of these OpenCL applications. We 
identify two important program features which affect the performance of an application on CPU-GPU 
platforms. The first important feature is the level of loop unrolling and the second feature is data 
dimensionality. Before moving forward, we briefly describe these two features: 

Loop unrolling: is a technique used to decrease the overhead of loop control by increasing the size of 
the loop body. This approach involves rewriting the loop body as a series of individual statements that are 
executed repeatedly. Loop unrolling is commonly used in many OpenCL programs [40][41]. 
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Dimensionality of input data: OpenCL enables concurrent execution of work items on processing 
units within a computing unit, which are grouped into workgroups. The supported index space in OpenCL 
is known as NDRange, which can have one, two, or three dimensions. An integer array of length N specifies 
the dimensions of an NDRange, with N denoting the number of dimensions. Each work item is assigned a 
global ID and a corresponding local ID in N dimensions within its workgroup [40].   

It is important to mention that a high level of loop unrolling and multi-dimensional input data are 
desirable features to exploit the potential of a parallel hardware [42][43]. Since it is possible to split a 
program’s instructions and data among multiple computational units in parallel. However, our code 
analysis reveals how well these features are utilized in these 11 applications and the impact in terms of 
performance on both CPU and GPU platforms. The detailed program analysis is given below. 

First, we report findings of our code analysis for 2D Convolution and FDTD-2D (where GPU 
performed better for all input sizes). We notice that there are two similarities in the programs of both 
applications. The first is that data is partitioned into two dimensions. The second is that all loops are 
unrolled in kernel program. We believe loop unrolling and multidimensional input data contribute 
towards better performance of GPU since these features support to exploit the parallelism of GPU platform. 
For instance, one iteration of an unrolled loop or portion of data may be processed on one GPU unit 
whereas at the same time another loop iteration or portion of data is processed on the other GPU unit.  

The source code excerpt for the both host and kernel programs of 2D Convolution application is 
shown in Figure 13 to demonstrate complete loop unrolling. It can be seen in the host program that there 
are two nested loops that iterate over the rows (i) and columns (j) of the output matrix B. These nested 
loops execute the 2D convolution operation, applying a 3x3 filter to the input matrix A. The outer loop 
iterates over rows, ranging from the second row to the second-to-last row (indices 1 to NI - 2), and the inner 
loop iterates over columns, ranging similarly from the second column to the second-to-last column (indices 
1 to NJ - 2). Within each iteration of the nested loops, the convolution operation calculates the weighted 
sum of neighboring elements from matrix A using the provided filter coefficients and stores the result in 
the corresponding position of matrix B.  

The code for kernel program Convolution2D_kernel is also shown in the Figure 13. The convolution 
operation is performed using a 3x3 filter on an input matrix A and the results are written to an output 
matrix B. The kernel identifies its global indices (i, j) using get_global_id, applies the filter coefficients c11 
to c33 to neighboring elements of A, and accumulates the weighted sum to compute the corresponding 
element of B. The conditional statement ensures the computation is performed only for interior elements, 
preventing out-of-bounds access. In this code loop unrolling is achieved since each work item computes a 
single output element independently and thus exploits the parallelism of GPU platform. 

According to the study, the performance of 2MM, 3MM, and GEMM applications is generally better 
on GPU except few input sizes as describe in Section 4.2. The code analysis of these 3 applications identifies 
some similarities. We find that two-dimensional data usage is a common feature in all three applications. 
Then we also notice that there is some degree of loop unrolling for all applications. However, the degree 
of loop unrolling is less than 2D Convolution and FDTD-2D where all loops are unrolled. For these 3 
applications, we find only limited loop unrolling. To be more precise, we find two loops in 2MM with two 
nested loops in each loop, in 3MM there are three loops with two nested loops in each loop, and in GEMM 
there is one loop with two nested loops. It was observed that only the nested loops were unrolled, while 
the outermost loop was not unrolled. It shows partial loop unrolling which is different than the complete 
loop unrolling of 2D Convolution and FDTD-2D. Since the loop unrolling and multidimensionality of data 
favors to exploit parallelism of GPU, we achieve better results on GPU by enlarge, however, for some input 
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sizes, the performance of CPU is marginally better. Since the performance difference is very small and 
negligible, we believe the application is still suitable to execute on a GPU platform. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Host program      b) kernel Program 
Figure 13. 2D Convolution Host and Kernel Programs 

As an example of partial loop unrolling, we share source code excerpt of 2MM application in Figure 
14. it can be seen in the host program that there are two loops each with two nested loops as discussed 
above. In additional the aforementioned partial loop unrolling can also be observed from the kernel 
program. 

We also analyze the source code of MVT, BICG, GESUMV, Covariance, and Correlation applications 
which perform better on a CPU platform. We find it common for all applications that they use one 
dimension of data with partial loop unrolling. In case of MVT there are two loops where each loop contains 
one nested loop, for BICG there is one loop with a nested loop, for Covariance there are three loops each 
with a nested loop, and for Correlation application there are four loops each with a nested loop. For all five 
applications, only nested loop is unrolled from each loop and the outer loop didn't unroll. Since the data 
is one dimensional and loop unrolling is limited (only one loop is unrolled), something which makes it 
difficult to exploit the parallelism of a GPU platform, the performance of GPU is not better in general.  

As an example of partial loop unrolling in this set of applications, we share source code excerpt of 
BICG application in Figure 15. it can be seen in the host program that there is only one loop with a nested 
loop as discussed above. In additional the partial loop unrolling can also be noticed from the associated 
kernel program. 

Through our experiments, we found that ATAX is an application that is better suited for CPU as its 
execution is consistently faster on the CPU across all input sizes. Our code analysis indicates that there is 
no loop unrolling at all with single dimensional input data. In the absence of loop unrolling and multi-



Journal of Computing & Biomedical Informatics                                           Volume 07  Issue 02                                                                                         

ID : 612-0702/2024  

dimensionality of data, the performance is not better on GPU platform. The source code excerpt for ATAX 
is given in the Figure 16 where no loop unrolling can be observed in the kernel program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) user program        b) Kernel Program 
Figure 14. 2MM Host and Kernel Programs 

 

a) Host Prpgram      b) Kernel Program 
Figure 15. BICG Host and Kernel Programs 
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      a) Kernel Program        b) Host Program 
Figure 16. Atax Host and Kernel Programs 

Generally speaking, our analysis indicates that applications with the capability of maximum loop 
unrolling along the use of multi-dimensional input data are better suited for GPU. On the other hand, 
application without (or limited) loop unrolling and single dimensional input data are better suited for CPU 
(since it is difficult to exploit the parallelism of GPU platform). The Summary of our finds is presented in 
Table 4 below.  

Table 3. Better performance platform for selected applications 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Domain Applications Computation 
Intensive 

Memory 
Intensive 

Suitable 
Architecture 

Stencils FDTD-2D ü ü GPU 

Image 
Processing 

2D-Convolution û 
 

ü 
 

GPU 

Data mining Correlation 
Covariance 

û 
û 
 

ü 
ü 
 

CPU 
CPU 

Linear Algebra 2MM 
3MM 
ATAX 
Bicg 
MVT 

Gemm 
Gesummv 

 

ü 
ü 
û 
û 
û 
ü 
ü 

û 
û 
ü 
ü 
ü 
û 
ü 

GPU 
GPU 
CPU 
CPU 
CPU 
GPU 
CPU 
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Table 4. Summary of OpenCL applications code analysis 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
5. Conclusions and Future Work 

This study assesses the performance of OpenCL applications by running them on both CPU and GPU 
systems. The research aims to determine which applications perform better on each architecture and why 
a particular architecture is more suitable for a specific application. We find that 2DCONV, FDTD-2D, 2MM, 
3MM, and GEMM perform faster on GPU, while Correlation, Covariance, ATAX, BICG, GESUMV and 
MVT execute faster on CPU. We analyze the source code of each application to figure out why a particular 
architecture is more suitable for a given application. Our study has identified two significant software 
features that have an impact on the performance of OpenCL applications: the number of data dimensions 
and the ability to unroll loops. Through the analysis of the 2DCONV and FDTD-2D applications, it was 
observed that the host program contained two dimensions of data and all loops are unrolled in the kernel 
program. These features are favorable for leveraging the parallelism of GPU architectures, which is why 
these applications demonstrated better performance on the GPU. As the degree of multidimensionality or 
loop unrolling decreases, the performance eventually becomes better on CPU since an application is not 
been able to effectively exploit the parallelism of a GPU architecture. The ATAX application exhibits better 
performance on CPU due to the absence of loop unrolling in the kernel program and the use of only one 
dimension in the host program. In addition, there are some cases when we observe partial loop unrolling. 
It is the case for 2MM, 3MM, and GEMM applications, the host program has two dimensions, and two of 
its loops have been unrolled (i.e., nested loops) from each outer loop in kernel program. We find 
performance is better on GPU in general. In contrast, for the BICG, GESUMMV, MVT, Correlation, and 
Covariance applications, it is discovered that the host program has only one-dimensional input data and 
only one nested loop was unrolled from each outer loop in the kernel program. As a result of limited loop 
unrolling and a single data dimension, these applications exhibited better performance on the CPU. We 
believe that the performance of CPU suitable applications can be improved considerably on GPU by 
increasing the data dimensionality and level of loop unrolling. In this context, as a future work, we are 
planning to modify the source code of these OpenCL applications for improved GPU performance and 
make a comparison with original applications (i.e., unmodified).     
 

  

S. No Applications Multi-
Dimensional Data 

Loop 
Unrolling 

Suitable 
Platform 

1 2D Convolution 
FDTD-2D 

Yes Yes GPU 

2 2MM 
3MM 

Gemm 

Yes Partial GPU 

3 Correlation 
Covariance 

Bicg 
MVT 

Gesummv 

No Partial CPU 

4 ATAX No No CPU 
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