
Journal of Computing & Biomedical Informatics Volume 04 Issue 01

 ISSN: 2710 - 1606 2022

ID : 55/0401/2022

Research Article

https://doi.org/10.56979/401/2022/55

Preprocessing: A method For Reducing Time Complexity

Abbas Mubarak1, Sajid Iqbal2, * Qaisar Rasool2, Nabeel Asghar2, Neetu Faujdar3 and Abdul Rauf2

1Department of Computer Science, Institute of Southern Punjab, Multan, Pakistan.
2Department of Computer Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.

3Department of Computer Science, GLA University, Mathura, India.
*Corresponding Author: Sajid Iqbal. Email: sajidiqbal.pk@gmail.com.

Received: February 15, 2022 Accepted: November 01, 2022 Published: December 29, 2022.

__

Abstract: Data can be processed quickly if it is in some order, whereas unsequenced data can take

more time to obtain results. Sorting is used for data arrangement. It is also one of the essential

requirement for most applications and this step helps to boost performance. Sorting is also a

prerequisite in several computer applications like databases. Over time computer scientists have not

only introduced new sorting techniques considering various factors to be improved but they have

also presented enhanced variants of existing sorting methods. The main objective has always been to

reduce the execution time and space of the sorting algorithms. With every passing day, digital content

is growing rapidly, which is a significant cause that encourages researchers to design new time-space

efficient sorting algorithms. This paper presents some preprocessing strategies for quicksort and

insertion sort to improve their performances. Tha main idea of using these preprocessings is to make

input data more suitable for sorting algorithm, as most sorting function performs extraordinary for a

specific type of input, such as insertion sort works better on nearyly sorted data. To authenticate the

efficiency of existing sorting algorithms, these have been compared with proposed preprocessing

strategies. The results with proposed techniqes outperforms the results of original sorting methods.

It also helps to convert worst case into average case. By using this approch complexity of many

algorithms can be reduced, therfore this is very important.

Keywords: Sorting Algorithm; Insertion Sort; Quick Sort; Efficient Sorting.

1. Introduction

 An algorithm is a way to follow steps in well-defined order to get a task done [1] and a computer

needs an algorithm to complete every task [2]. In computers, programming algorithms are considered very

significant [3]. For different kinds of problems, one or more algorithms can be designed. Sorting is one of the

problem that is heavily studied in computer science [4]. Arranging data in a way that makes it easier to

understand and better comprehend is known as sorting. Data can be arranged either in ascending or de-

scending order. Various kinds of content such as integer and string data can be assigned to sorting methods

for arranging them in the required order. Many conventional and advanced algorithms with different space

and time complexities are available in the literature [5]. Every sorting method follows a unique technique

and based on these techniques sorting methods can be classified as sorting by exchanging, insertion, selec-

tion, and merging [6]. Sorting has become very important due to extensively growing big data in different

forms and with the growing types of applications, sorting is becoming more important [7]-[9]. Fast execution

also depends on how sorting algorithm works [10] also efficient algorithm mechanism is more important

than good hardware [11]. In the process of solving other algorithmic problems sorting is the first step [12] as

sorting makes efficient searching possible [13], and sorting acts as the backbone in databases and networks

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

[14]. All sorting applications cannot take advantage of multi-cores available in current CPUs and GPUs,

therefore a novel sorting method is still needed that can take full advantage of available hardware [15].

To design an efficient sorting method, several resources are considered [16] and in this context time and

space are more important [17]. There are several categorizations of sorting algorithms that can be found in

the literature [18] however mainly these are categorized into two classes i.e. comparison-based and non-

comparison-based sorting methods. Algorithms that rely on comparisons for sorting are considered to be

comparison-based sorting methods and those that do not use comparisons for sorting are known as non-

comparison-based sorts. Many researchers have worked on existing sorting methods to improve their effi-

ciency to reduce sort method complexity [19]. Different types of sorting methods perform differently on

different types of input [20] and there is no particular standard sorting method that is appropriate for every

type of problem instead every method is problem-specific [20]. In the process of selecting the best sorting

method for a particular problem several factors are considered [21]. These includes the choice of the data

structure, type of data to be processed, use of parallelism, use of RAM only or use of secondary storage and

use of high-level language or low-level language for efficient implementation.

Basima Elshqeirat et al., presented an enhanced version of insertion sort titled Enhanced Insertion Sort

(EIS) by using threshold values [22]. The authors proposed the enhanced insertion sort, especially for large

data sets. The proposed algorithm is stable, adaptive, and simple to program. The experimental result shows

that the proposed algorithm is 23% faster than the traditional insertion sort.

In this paper, we have proposed novel preprocessing strategies for Quicksort and Insertion Sort. The

purpose of these preprocessing is to reduce execution time taken by sorting algorithms for sorting and to

avoid worst case. The preprocessing for a particular sorting method depends upon the way of sorting. As

different sorting methods have different sorting mechanism therefore one preprocessing technique cannot

be used for every sorting method. Each sorting function works differently on different types of input. For

example, quick sort works better when it gets randomized array of input, whereas when data is given in

sequence quick sort leads to worst case. Consequently, quick sort need preprocessing that shuffle the input

data for efficient performance. Similarly, Insertion sort is suitable where data is in nearly sorted form thus a

preprocessing for insertion sort can be made to make the input data nearly sorted. The outputs of original

algorithms with preprocessing techniques have been compared. In both, the cases proposed preprocessing

is faster than the original one. We have also proved mathematically that the time complexity has been re-

duced of proposed preprocessing insertion as well as quicksort in comparison to the existing sorting.

1.1. Quick Sort

Quicksort, presented by Tony Hoare in 1959, is also a recursive, comparison-based sorting algorithm that

uses the divide and conquers methodology for sorting [1]. It first selects an element from the list called pivot

and breaks the given list or array around the pivot element. After pivot selection, it rearranges the list in a

fashion so that all members which are smaller than the selected pivot element are placed on the left side of

the pivot. Similarly, elements larger than the selected pivot element must be on the right side of the pivot.

Equal values can be placed on either side. After the rearranging process, the array of data elements can be

broken into non-equal parts. It then applies a quick sort algorithm on both sides [23] recursively. There are

several ways to select a pivot value.

• Choose the earliest element as a pivot

• Choose the final element as a pivot

• Choose a random element as a pivot

• Choose central element as a pivot

Quicksort is a comparison-based sort that is neither adaptive nor stable however it is among the fastest sort-

ing algorithms in practice [24]. Several enhancements for quick sort have been proposed in the literature for

example Aumuller et. al. proposed multiple pivot elements to make quick sort more efficient [25] and Ca-

derman presented a GPU version of quicksort [26] The time complexity of quicksort in the best and average

case is O(n log n) and in the worst case is O(n2) [10]. Quickso3rt uses the constant additional space with

unstable partitioning before making any recursive call.

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

1.1.1. Quick Sort Algorithm

QuickSort(X, low, high):

INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

if low < high then

pivot = Partition(X, low, high)

Quick sort(X, low, pivot − 1)

Quick sort(X, pivot + 1, high)

end if

Partition(X, low, high):

 pivot = X[low]

i = low – 1

for j = low to high − 1 do

 if A[j] _ x then

 i = i + 1

Exchange A[i] with A[j]

Exchange A[i + 1]with A[c]

return i + 1

 end if

 end for

1.2. Insertion Sort

This sorting method is a simple method and good for small lists. Insertion sort works by examining the

first two elements by comparing them and swapping them if required. It then picks an element from the

remaining unsorted list and adjusts it at its exact position. The same process goes on until all elements are

sorted. Insertion sort is more suitable when the list is nearly sorted. The time complexity of insertion sort in

the best case is O(n), and in the average and worst case is O(n2), whereas space complexity is O(n) [2].

1.2.1. Insertion Sort Algorithm

InsertionSort(X, low, high):

INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

 Set j = 1

while(i < n)

 Set temp = a[j];

Set i = j − 1

while(i >= 0 && temp < a[i])

 Set a[i + 1] = a[i];

i = i − 1;

 A[i + 1] = temp

2. Literature Review

 In this section, we review different sorting methods and their variations proposed in the literature.

Quick Sort performs best in random data [27]. Sangeetha [28] proposed and used the dynamic quick sort

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

mapping procedure for power optimization. All the test modules are combined on a separate chip to reduce

the space used this is called System On Chip (SOC). The authors reduced the delay by 7 to 8 nanoseconds.

So in this way, actual usage of CGRA is gained beside the low power depletion and space decrease. The

authors [29] introduced a two-way merge sort that combines the estimate of capacitor currents in perfect

circumstances that reduce the computation weight and accelerate the sorting. Further to resolve the non-

ideal condition, this paper proposed the insertion sort improvement algorithm based on the two-way merge

sort. In the proposed technique benefit of the MMC control approach has been used and it is much quicker

than quicksort. The authors [30] proposed a new algorithm based on the quicksort algorithm. The proposed

algorithm gives better results for small as well as large datasets. We have seen many traditional sorting

algorithms. Each algorithm consists of its best, average, and worst-case time complexity. So we cannot decide

on the best sorting algorithm based on the worst-case scenario. All the algorithms have their pros and cons

itself. The authors [31] provide an overview of the advanced sorting algorithms. The sorting algorithms have

been implemented on 11K GoodRead’s data and compared the time and space complexity to each other.

Sorting is the most demanding problem in the domain of computer science. The authors [32] presented the

QuickSort algorithm (QM sort) which is most suitable for multi-core CPU architectures. The QM sort has

two phases, the first phase is used to make chunks sorted and the second phase is used to merge the sorted

chunks. In the first phase, the authors proposed a parallel quick sort algorithm named BPQsort. The execu-

tion time of BPQsort gained 40%-50% which is finer than QM sort. At last, the execution time of QM-sort is

10%-15% finer than quick sort based on OpenMP. Quicksort is an efficient sorting algorithm compared to

heap and merge sort although it is having O(n2) in the worst case. The authors [33] work on the time com-

plexity of Quicksort and compare it with the improved bubble and Quicksort algorithm. After analysis of

the comparison of Quicksort programmer can decide to reduce the code size and improve the efficiency of

code size. Sorting is one of the big domains to do the research. The sorting problem attracted the researcher

to do the research. The author [34] proposed a new sorting algorithm called the SMS algorithm (Scan, Move,

and Sort). The proposed algorithm is the enhancement of traditional Quicksort in the time complexity of

best, average, and worst-case when the data set is large. The proposed SMS is compared with Quicksort and

the result were promising.

In this paper, the authors presented the formal specification of insertion sort and used the Isabelle/HOL

for the correctness of the algorithm. The authors compare the value-based and index-based methods to each

other for the formulization. The findings of the paper are that the index-based method is more suitable for

verifying all aspects [35]. In this paper, the authors developed the Anchor based Insertion sorting algorithm

for OS-CFAR (Constant False Alarm Rate). A linked list-built arrangement is used in the developed scheme

to present the order arrangement to specify the numerous featured models. The proposed scheme reduced

the computational overhead [36]. This paper contains the modified traditional insertion sort which provides

better performance in many types of applications. Incoming data has been accepted sequentially and ana-

lyzed immediately whether it is a final result or has to be neglected. To find the location of incoming input

ICIS algorithm used a similar method to the binary search algorithm. ICIS is an in-place sorting algorithm

with complexity O (n log n). The proposed algorithm saves time and space in comparison to the traditional

one [37]. In this paper, the authors focused on the principle of Insertion Sort and resolve a sorter issue in

Membrane Computing. Authors computed how a hypothetical calculating scheme is similar to membrane

computing which achieves the simple concept of sorting. To do this authors presented the uncertain repro-

duction instruction so that every membrane can replicate an additional membrane having a similar construc-

tion to the unique one. In the end, the authors presented the procedure of sorting as a group of transactions

which is executed in four stages having different steps [38].

3. Proposed Work

3.1 Proposed Preprocessing Technique for Quicksort

Quicksort follows a recursive strategy and divides and conquer approach for sorting data. The worst

case time complexity of quicksort is O(n2). The best case is nearly impossible in the quicksort because it

required a median value in the middle of the input list. An extensive experiment study tells us that quicksort

needs the data to be in random order for best performance. In the case of ascending and descending order,

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

quicksort fails miserably as it is not adaptive and costs a lot due to more comparisons. To avoid extra com-

parison costs and to randomize the input list for efficient processing, this paper presents a preprocessing

technique or shuffling for quicksort due to which the worst case of quicksort becomes the average Case. As

quicksort performs best when data is given in random order, therefore before applying the original quicksort

algorithm proposed preprocessing technique converts input data into randomized order. The proposed

preprocessing technique consist of two steps. In first step two halves of input list are converted into random-

ize order and random indices are selected from 0 to midindex for first half of array and mid+1 to maxindex

for second half of array, and each element is replaced with generated random index. Whereas in second step

of preprocessing random numbers are selected from whole list.

3.1.1 Step 1 proposed Preprocessing Algorithm

low 0

upper
n

2
− 1

For i = 0 to n/2

 {

 b  = (rand() % (upper − low + 1)) + low

 temp  a[i]

 a[i] a[b]

 a[b] temp

 {

low n/2

uppern − 1

For i = n/2 to n

 {

 b  = (rand() % (upper − low + 1)) + low

 temp  a[i]

 a[i] a[b]

 a[b] temp

 {

 3.1.2 Step 2 proposed Preprocessing Algorithm

𝐹𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛/2

 {

 𝑏  𝑟𝑎𝑛𝑑() % 𝑛

 𝑏2  𝑟𝑎𝑛𝑑() % 𝑛

 𝑡𝑒𝑚𝑝  𝑎[𝑖]

 𝑎[𝑖] 𝑎[𝑏]

 𝑎[𝑏] 𝑡𝑒𝑚𝑝

 𝑡𝑒𝑚𝑝  𝑎[𝑏2]

 𝑎[𝑏2] 𝑎[𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥]

 𝑎[𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥] 𝑡𝑒𝑚𝑝

 𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥 − −

 }

From 0 to midindex two random indexs are selected using rand() function, random number generator

in C++ and first random index value is replaced with the first element and second randome index value is

replaced with the last element value. This process executes n/2 times and each time it replaced input elements

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

with random index values. This proposed technique will cost O(
n

2
). Step 2 preprocessing simulation is

given below whereas in step 1 same procedure is applies on both halves of input list.

3.2 Proposed preprocessing technique step 2 simulation

Original array

10 9 8 7 6 5 4 3 2 1

 i=0, b=4, maxindex=9, b2=2

6 1 8 7 10 5 4 3 2 9

 i=1, b=9, maxindex=8, b2=7

6 9 8 7 10 5 4 2 3 1

 i=2, b=5, maxindex=7, b2=3

6 9 5 2 10 8 4 7 3 1

 i=3, b=1, maxindex=6, b2=4

6 2 5 9 4 8 10 7 3 1

 i=4, b=9, maxindex=5, b2=0

2 8 10 1 7 5 4 3 9 6

3.3 Proposed Preprocessing Technique for insertion sort

 Insertion sort is one of the oldest sorts. Insertion sort is best for nearly sorted data. The time complex-

ity of insertion sort in worst and average case scenarios is O(n2) [39]. To reduce the execution time of inser-

tion sort and to make it more efficient this paper presents a novel preprocessing technique. The primary

motive of this preprocessing is to make list in hand nearly sorted up to a possible extent, as it is admitted

fact that insertion sort performs well if data is nearly sorted. The proposed preprocessing technique consists

of 04 steps.

3.3.1 Step 1 Preprocessing

 In proposed preprocessing, the first element of the input list is compared to the last element of the

input list and swapping of these elements is done if required. Similarly, the second element is compared to

the second last element, and so on. These preprocessing costs O(
n

2
).

 3.3.2 Step 1 Pseudo code

 For i = 0 to n/2

 {

 If(a [i] > a [maxindex])

 {

 temp a[i]

 a[i] a[maxindex]

 a[maxindex] temp

 }

 maxindexmaxindex − 1

 }

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

 3.3.3. Step 1 Simulation

41 67 34 0 69 24 78 58 62 64

It is pertinent to mention that in the case of the worst case where all data is reverse sorted above novel

preprocessing will convert the input data into the whole sorted form, therefore worst-case scenario becomes

the best case with this approach.

 Resultant array

41 62 34 0 24 69 78 58 67 64

3.3.4 Step 2 Preprocessing

In step 2 proposed preprocessing technique, in the first half i.e. 0 to midindex, the first element of the

input list is compared to the last element of the first half i.e. mid element, and swapping of these elements is

done if required. Similarly, the second element of the first half is compared to the second last element of the

first half, and so on. The cost of this preprocessing is O(
n

2
− 3) comparisons.

The same is the procedure for the other half i.e. from mid+1 index to maxindex. The cost of this prepro-

cessing is O(
n

2
− 3) comparisons.

 3.3.5 Step 2 Pseudo code

 For i = 0 to midindex

 {

 If (a[i] > a[midindex])

 {

 tempa[i]

 a[i] a[midindex]

 a[midindex] temp

 }

 midindexmidindex − 1

 }

 For i = midindex + 1 to maxindex

 {

 If (a[i] > a[maxindex])

 {

 tempa[i]

 a[i] a[maxindex];

 a[maxindex] temp;

 }

 maxindexmaxindex − 1

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

 }

 3.3.6 Step 2 simulation

41 62 34 0 24 69 78 58 67 64

 Resultant array

24 0 34 62 41 64 67 58 78 69

3.3.7 Step 3 Preprocessing

In step 3 loop is started from (
n

4
) and execute up to (

n

2
) − 1 exchange of numbers is done if required.

This will cost O (
n

4
+ 1).

 3.3.8. Step 3 Pseudo code

 mid2 = midindex

 For i =
n

4
to midindex

 {

 mid2mid2 + 1

 If (a[i] > a[mid2]

 {

 tempa[i]

 a[i] a[mid2]

 a[mid2] temp

 }

 }

 Resultant array

24 0 34 62 41 64 67 58 78 69

 3.3.9 Step 4 Preprocessing

In this part, the whole list is divided into 4 parts i.e from the start index of 0 to (
n

4
) , (

n

4
+ 1) to (

n

2
) ,

(
n

2
) + 1 to (

n

4
) + (

n

2
) and (

n

4
) + (

n

2
) + 1 to maxindex. The total cost of this preprocessing is calculated as

O(
n

2
).

24 0 34 62 41 64 67 58 78 69

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

 3.3.10 Step 4 simulation

24 0 34 62 41 64 67 58 78 69

 Resultant array

24 0 34 41 62 64 67 58 78 69

After step 4, step 2 will execute again whose cost will be O (
n

2
− 3) + O (

n

2
− 3).

Time complexity of preprocessing

 T(n) = O (
n

2
) + O (

n

2
− 3) + O(

n

2
− 3) + O(

n

4
+ 1) + O(

n

2
) + O (

n

2
− 3) + O (

n

2
− 3)

T(n) = C + (
2n + 2n − 12 + 2n − 12 + n + 4 + 2n + 2n − 12 + 2n − 12

4
)

T(n) = C + (
13n − 44

4
)

T(n) = Ω(n)

Best case

In the best-case scenario (sorted elements), the insertion sort outer loop is executed Ω(n − 1) times

while the inner loop does not execute. Therefore, total time complexity of the proposed preprocessing tech-

nique and insertion sort is.

T(n) = O (
n

2
) + O (

n

2
− 3) + O (

n

2
− 3) + O (

n

4
+ 1) + O (

n

2
) + O (

n

2
− 3) + O (

n

2
− 3) + Ω(n − 1)

T(n) = C + (
2n + 2n − 12 + 2n − 12 + n + 4 + 2n + 2n − 12 + 2n − 12

4
)

T(n) = C + (
13n − 44

4
) + Ω(n − 1)

T(n) = Ω(n) + Ω(n)

T(n) = Ω(n)

Where C is the constant over here.

worst case

In the worst-case scenario (reverse sorted elements), the insertion sort outer loop is executed Ω(n − 1)

times while the inner loop does not execute. Therefore, total time complexity of the proposed preprocessing

technique and insertion sort is the same as in the best case.

T(n) = O(n)

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

Average case

Insertion sort time complexity in average case is O(n2). The preprocessing of insertion sort is adjusting

small numbers at starting positions and large numbers at last positions, due to which average case complex-

ity of insertion sort is proposed as O(n<2). The reason for this is preprocessing is making input nearly sorted,

and insertion sort performs better in this form, and with preprocessing execution time illustrates more than

50% increase in performance, so when original time complexity is n2 and after saving more than 50% time

the time complexity is proposed as less than n2.

4. Experimental Details

Insertion sort, Enhanced insertion sort and insertion sort with preprocessing have been implemented

in Java IDE Eclipse, whereas Quicksort with proposed techniques have been implemented in C++ IDE Dev

C++ version 5.11 using Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz, with 8GB installed memory, 64 bit, OS

Windows 10, with data structure array. We are considering the total time consumption taken by each sort in

seconds to sort up to 2,00,000 Numbers for comparison.

5. Result and Discussion

Undoubtedly sorting algorithms are very significant, as they are inevitable for the searching process.

Several computer scientists have presented new and enhanced sorting methods, but in this paper the concept

of preprocessing is new. As most sorting methods work gives better result when they get specific type of

input therefore, we can use some preprocessing functions on data to get efficient performance from sorting

methods. To make some sorting methods efficient, we have designed preprocessing techniques so that when

the algorithm applies to the data, it gets the data in its demanding condition. For empirical evidence, we

have proposed preprocessing techniques for two conventional as well as renowned sorting algorithms which

are quick sort and insertion sort.

By using the quicksort preprocessing technique, we have converted its worst case into the average case.

Similarly, by using the insertion sort preprocessing technique we have converted its worst-case into the best

case and improved the average case of insertion sort. Execution time results of original algorithms with pre-

processing techniques are given below.

Table 1 consists of execution time results of quicksort and quicksort with preprocessing in seconds

which are graphically illustrated in Figure 1.

Table 1. Execution Time Comparison of Quick Sort with Proposed Preprocessing

Input Num-

bers

1,00,000 1,50,000

Input Type Sorted Random Reverse

sorted

Sorted Random Reverse

sorted

Quick Sort 22.891 0.0140510 19.6165 40.381 0.0329121 42.3126

Quick Sort

with prepro-

cessing

0.0199917 0.0199721 0.019974 0.029974 0.0439865 0.0299727

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

0
5

10
15

B
e

st

R
an

d
o

m

W
o

rs
t

B
e

st

R
an

d
o

m

W
o

rs
t

100,000 150,000

Ex
e

cu
ti

o
n

 T
im

e
 in

 s
e

co
n

d
s

Input Numbers

Preprocessed Insertion sort with other variants of
insertion sort

Insertion Sort

Enhanced Insertion
sort

Insertion Sort with
preprocessing

Table 2 consists of Table 2 consist of execution time results of insertion sort, enhanced insertion sort,

and insertion sort with preprocessing in seconds which are graphically illustrated in Figure 2.

Table 2. Execution Time comparison of insertion sort, Enhanced insertion sort, and insertion sort with preprocessing

 Sorts
1,00,000 150,000

Best Random Worst Best Random Worst

Insertion Sort 0.035 1.505 1.689 0.06 4.729 4.911

Enhanced Insertion sort 0.006 3.504 4.738 0.007 9.765 10.828

Insertion Sort with

preprocessing
0.011 0.914 0.009 0.019 1.989 0.013

Figure 2. Execution Time comparison of existing insertion sort, enhanced insertion sort, and preprocessing insertion

sort

Results of table 2 and figure 2 prove that Enhanced Insertion Sort (EIS) which was presented in [22]

takes more time than original insertion sort algorithm, however our proposed preprocessing strategy is bet-

ter than the original insertion sort as well as Enhanced Insertion Sort in terms of execution time.

0
5

10
15
20
25
30
35
40
45

So
rt

e
d

R
an

d
o

m

U
n

so
rt

ed

So
rt

e
d

R
an

d
o

m

U
n

so
rt

ed

1,00,000 1,50,000

Ex
e

cu
ti

o
n

 T
im

e
in

 s
e

co
n

d
s

Input Numbers

Quick Sort with and without Preprocessing

Quick Sort

Quick Sort With
Preprocessing

 Figure 1. Execution Time comparison of existing quicksort with preprocessing quicksort

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

6. Conclusion

Computer researchers have been working to design new efficient sorting algorithms, but to improve

algorithm performance, the use of preprocessing strategies is a novel approach. By using these preprocessing

techniques on input data before applying an original sorting algorithm we can save much execution time.

We have compared existing sorting (Insertion sort and Quicksort Sort) with proposed preprocessing tech-

niques and the results have been analyzed. Obtained results show the usability of proposed preprocessing

strategies. We have also proved mathematically that the time complexity has been reduced of proposed pre-

processing insertion as well as quicksort in comparison to the existing sorting. For future work the authors

intend to develop even more efficient preprocessing techniques for insertion and quick sort as well as for

more sorting algorithms.

7. Data availability statement

The algorithms are analyzed on ascending and descending datasets initialized by loops and random

numbers generated by rand functions therefore no separate dataset have been used. Soucrecode of Enhanced

Insertion Sort (EIS) given by the authors can be download from

https://github.com/muhyidean/EnhancedInsertionSort-ThresholdSwapping.

Source code of proposed preprocessed insertion sort is available at Mendelay data

(https://dx.doi.org/10.17632/s3v5tzxbdg.1). Source code of proposed preprocessed quick sort is available at

Mendelay data (https://dx.doi.org/10.17632/nmk5t7zb6k.1).

 Funding: This research received no external funding

Acknowledgments: We acknowledge the Center for Artificial Intelligence Research (CAIR), Department of

Computer Science, Bahauddin Zakariya University, Multan, to provide support for this research work.

Conflicts of Interest: The authors declare no conflict of interest

https://github.com/muhyidean/EnhancedInsertionSort-ThresholdSwapping
https://dx.doi.org/10.17632/s3v5tzxbdg.1
https://dx.doi.org/10.17632/nmk5t7zb6k.1

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

References

1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press.

2. Rana, M. S., Hossin, M. A., Mahmud, S. H., Jahan, H., Satter, A. Z., & Bhuiyan, T. (2019). MinFinder: A new approach in sorting

algorithm. Procedia Computer Science, 154, 130-136.

3. Oyelami, O. M. (2009). Improving the performance of bubble sort using a modified diminishing increment sorting. Scientific Re-

search and Essays, 4(8), 740-744.

4. Jugé, V. (2020). Adaptive Shivers sort: an alternative sorting algorithm. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms (pp. 1639-1654). Society for Industrial and Applied Mathematics.

5. Singh, H. R., & Sarmah, M. (2015). Comparing rapid sort with some existing sorting algorithms. In Proceedings of Fourth Inter-

national Conference on Soft Computing for Problem Solving (pp. 609-618). Springer, New Delhi.

6. Knuth, D. E. (2014). Art of computer programming, volume 2: Seminumerical algorithms. Addison-Wesley Professional.

7. Shabaz, M., & Kumar, A. (2019). SA sorting: a novel sorting technique for large-scale data. Journal of Computer Networks and

Communications, 2019.

8. Bijoy, M. H. I., Hasan, M. R., & Rabbani, M. (2020, July). RBS: a new comparative and better solution of sorting algorithm for

array. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5).

IEEE.

9. Idrizi, F., Rustemi, A., & Dalipi, F. (2017, June). A new modified sorting algorithm: a comparison with state of the art. In 2017 6th

Mediterranean Conference on Embedded Computing (MECO) (pp. 1-6). IEEE.

10. Faujdar, N., & Ghrera, S. P. (2015, April). Analysis and testing of sorting algorithms on a standard dataset. In 2015 Fifth Interna-

tional Conference on Communication Systems and Network Technologies (pp. 962-967). IEEE.

11. Downey, R. G., & Fellows, M. R. (2012). Parameterized complexity. Springer Science & Business Media.

12. Meolic, R. (2013, May). Demonstration of Sorting Algorithms on Mobile Platforms. In CSEDU (pp. 136-141).

13. Cheema, S. M., Sarwar, N., & Yousaf, F. (2016, August). Contrastive analysis of bubble & merge sort proposing hybrid approach.

In 2016 Sixth International Conference on Innovative Computing Technology (INTECH) (pp. 371-375). IEEE.

14. Kumar, P., Gangal, A., Kumari, S., & Tiwari, S. (2021). Recombinant Sort: N-Dimensional Cartesian Spaced Algorithm Designed

from Synergetic Combination of Hashing, Bucket, Counting and Radix Sort. arXiv preprint arXiv:2107.01391.

15. Abdel-Hafeez, S., & Gordon-Ross, A. (2017). An Efficient O ($ N $) Comparison-Free Sorting Algorithm. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 25(6), 1930-1942.

16. Agarwal, A., Pardesi, V., & Agarwal, N. (2013). A new approach to sorting: min-max sorting algorithm. Int. J. Eng. Res. Tech-

nol, 2(5), 445-448.

17. Busse, L. M., Chehreghani, M. H., & Buhmann, J. M. (2012, July). The information content in sorting algorithms. In 2012 IEEE

International Symposium on Information Theory Proceedings (pp. 2746-2750). IEEE.

18. Pandey, R. C. (2008). Study and Comparison of various sorting algorithms (Doctoral dissertation).

19. Zafar, S., & Wahab, A. (2009, August). A new friends sort algorithm. In 2009 2nd IEEE International Conference on Computer

Science and Information Technology (pp. 326-329). IEEE.

20. Khairullah, M. (2013). Enhancing worst sorting algorithms.

21. Mohammed, A. S., Amrahov, Ş. E., & Çelebi, F. V. (2017). Bidirectional Conditional Insertion Sort algorithm; An efficient progress

on the classical insertion sort. Future Generation Computer Systems, 71, 102-112.

22. Elshqeirat, B., Altarawneh, M., & Aloqaily, A. (2020). Enhanced insertion sort by threshold swapping. International Journal of

Advanced Computer Science and Applications, 11(6).

23. Sintorn, E., & Assarsson, U. (2008). Fast parallel GPU-sorting using a hybrid algorithm. Journal of Parallel and Distributed Com-

puting, 68(10), 1381-1388.

24. Alt, H. (2011). Fast Sorting Algorithms. In Algorithms unplugged (pp. 17-25). Springer, Berlin, Heidelberg.

25. Aumüller, M., Dietzfelbinger, M., & Klaue, P. (2016). How good is multi-pivot quicksort?. ACM Transactions on Algorithms

(TALG), 13(1), 1-47.

26. Cederman, D., & Tsigas, P. (2010). Gpu-quicksort: A practical quicksort algorithm for graphics processors. Journal of Experi-

mental Algorithmics (JEA), 14, 1-4.

27. Tang, H., Geng, S., Peng, X., Yan, S., Zhang, Y., & Wang, Z. (2020, October). A Design of ID Sorting Module Based on Quick

Sorting Algorithm. In 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM) (pp. 228-232).

IEEE.

28. Sangeetha, K., Anuratha, K., Devi, R. L., & Shamini, S. S. (2021, July). Dynamic Quick Sort Algorithmic Approach For Opitimizing

Power And Spatial Mapping In SOC. In 2021 International Conference on System, Computation, Automation and Networking

(ICSCAN) (pp. 1-6). IEEE.

29. Zhao, F., Xiao, G., Song, Z., & Peng, C. (2016, May). Insertion sort correction of two-way merge sort algorithm for balancing

capacitor voltages in MMC with reduced computational load. In 2016 IEEE 8th International Power Electronics and Motion Con-

trol Conference (IPEMC-ECCE Asia) (pp. 748-753). IEEE.

Journal of Computing & Biomedical Informatics Volume 04 Issue 01

ID : 55/0401/2022

30. Budhani, S. K., Tewari, N., Joshi, M., & Kala, K. (2021, January). Quicker Sort Algorithm: Upgrading time complexity of Quick

Sort to Linear Logarithmic. In 2021 2nd International Conference on Computation, Automation and Knowledge Management

(ICCAKM) (pp. 342-345). IEEE.

31. Marcellino, M., Pratama, D. W., Suntiarko, S. S., & Margi, K. (2021, October). Comparative of Advanced Sorting Algorithms (Quick

Sort, Heap Sort, Merge Sort, Intro Sort, Radix Sort) Based on Time and Memory Usage. In 2021 1st International Conference on

Computer Science and Artificial Intelligence (ICCSAI) (Vol. 1, pp. 154-160). IEEE.

32. Liu, Y., & Yang, Y. (2013, December). Quick-merge sort algorithm based on multi-core linux. In Proceedings 2013 International

Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) (pp. 1578-1583). IEEE.

33. Xiang, W. (2011, November). Analysis of the time complexity of quick sort algorithm. In 2011 international conference on infor-

mation management, innovation management and industrial engineering (Vol. 1, pp. 408-410). IEEE.

34. Mansi, R. (2010). Enhanced Quicksort Algorithm. Int. Arab J. Inf. Technol., 7(2), 161-166.

35. Jiang, D., & Zhou, M. (2017, December). A comparative study of insertion sorting algorithm verification. In 2017 IEEE 2nd Infor-

mation Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp. 321-325). IEEE.

36. Shin, D., Kim, J., Kim, J., Bang, J., & Kwon, K. K. (2014, May). Anchor based insertion sorting algorithm for OS-CFAR. In 2014

IEEE Radar Conference (pp. 0391-0394). IEEE.

37. Ibrahim, R. F. (2020, March). Immediate Conditional Insertion Sort (ICIS). In 2020 SoutheastCon (Vol. 2, pp. 1-5). IEEE.

38. Barfeh, D. P. Y., Bustamante, R. V., & Pabico, J. P. (2017). Insertion membrane-sorter using comparator P system. In 2017 4th IEEE

International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-5). IEEE.

39. Mubarak, A., Iqbal, S., Naeem, T., & Hussain, S. (2022). 2 mm: A new technique for sorting data. Theoretical Computer Sci-

ence, 910, 68-90.

