
Journal of Computing & Biomedical Informatics Volume 07 Issue 02
 ISSN: 2710 - 1606 2024

ID : 546-0702/2024

Research Article
https://doi.org/10.56979/702/2024

A Rule-Based Approach for Automatic Generation of Class Diagram from
Functional Requirements Using Natural Language Processing and Machine

Learning

Muhammad Ramzan1, Ghunwa Saeed Sadiqi2, Muhammad Salman Bashir2*, Summair Raza1, and Asma
Batool2

1Department of Software Engineering, University of Sargodha, Sargodha, Pakistan.

2Department of Computer Science and Information Technology, Virtual University of Pakistan.
.*Corresponding Author: Muhammad Salman Bashir. Email: salmanbashir@vu.edu.pk

Received: March 12, 2024 Accepted: August 03, 2024 Published: September 01, 2024

Abstract: Requirement analysis is the initial and most crucial phase of the software development
life cycle (SDLC). In this phase, the requirements after gathering from the user and different
stakeholders are evaluated and abstraction is created in terms of a model. The generation of UML
class diagrams from requirements is a very time-consuming task and hence demands the
automation of the process. The researchers have proposed a number of tools and methods for the
transformation of natural language requirements to UML class diagrams in the last few years.
Different approaches like Natural Language Processing (NLP) and Rule based approaches were
used for this purpose, but they have certain limitations. Moreover, these approaches do not extract
all the relationship types of class diagrams. To resolve this issue machine learning based approaches
have been used for a few years. Machine learning requires large and precise datasets to train models.
In this research, a new model is proposed to generate class diagrams from requirements written in
natural language more accurately using Natural Language Processing as well as the machine
learning approach. NLP has helped to extract the classes, attributes, and methods while machine
learning is used to extract the class relationships. To implement machine learning models we have
created a dataset containing class names and relationship types i.e. aggregation, association,
composition, and inheritance. The effectiveness of models is analyzed by comparing the results
using accuracy metrics.

Keywords: UML Class Diagram; Machine Learning; Dataset; Class Relationships; Aggregation;
Association; Composition; Inheritance.

1. Introduction

Requirements engineering is a very important yet problematic step as it requires extra time and effort
for requirements elicitation and verification. Requirements that are elicited in this phase are recorded in a
document called software requirements specification (SRS) in natural language. These natural language
requirements can be gathered from several sources like users, existing documents, and notes. Natural
language is ambiguous and inconsistent in nature and hence the requirements written in natural language
are also inconsistent, incomplete, and ambiguous in nature. Hence these requirements can be interpreted
differently by different analysts. Moreover, different factors like psychological, sociological and
geographical can also affect the understanding of requirements. Hence before developing the system it is

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

the best idea to transform these requirements into less ambiguous formal language. Requirement analysts
analyze the requirements in order to find and fix inconsistencies and ambiguities. However, a human
analyst can also miss defects or can interpret a statement differently when he does not have enough domain
knowledge. One of the main artifacts of object-oriented design is UML class diagrams because many other
models can be derived from UML class diagrams. Class diagram shows the static view of the system. Figure
1.1. shows the standard class diagram.
1.1.1. Class Notation

A class diagram consists of different classes and a standard class notation consists of three sections:
1. Upper most section contains the class name.
2. Middle section consists of attributes of classes. Attributes type is separated by the colon.
3. Bottom section contains class operations. These are the services provided by the class.

1.2. Class Relationships
Every class is related to other classes in some ways. Relationships in class diagram represent the type

of connection that exist among different classes. Such types of relationship are discussed in Table 1.1.

Figure 1. Standard Class Diagram

Table 1. Types of Class Relationships
Relationship Type Purpose

Inheritance/ Generalization It represents “is a” relationship.

Simple Association Represents structural link between classes.
Aggregation Represents “part of” relationship. Special type of

association
Composition Special type of aggregation.

Parts destroys when whole destroy.
Dependency Represents that changes in definitions of one class

may change the other too.
Multiplicity Represents number of instances involved in

association.
Transforming natural language requirements to UML class diagram is a challenging task and

demands for some automation in the process. Different approaches are proposed for the transformation of
requirements into UML class diagrams. Natural language processing techniques, Rule based techniques
and machine learning based approaches are remarkable ones. Many researchers have used these
approaches and developed different tools to support the automation process. These include UMGAAR [1],

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

LIDA [2], CM Builder [3], DC Builder [4], GOOAL [5], READ[6], and RAUE [7] etc. These tools use NLP
technique to evaluate the natural language requirements and transform them into class diagrams. NLP is
a text processing technique. It involves different phases like parsing, text analysis and entity recognition.
But it is not competent enough to extract all class diagram components [8]. Experiments show that these
tools do not generate accurate class diagrams. Besides, most of the approaches do not extract all the
elements of class diagrams like classes, attributes, methods and particularly advanced relationship types.

In Rule based approaches different rules and pattern are defined for the extraction of relevant
information. Designing of rules require adequate domain knowledge and knowledge of software
engineering concepts [9], [10]. While offering some benefits, Rules based approaches have their own
limitations too. These approaches lack in flexibility. As rules are predefined hence it is difficult to handle
variations in requirements. Rules are manually defined and it is time consuming and laborious task to
define rules. Different interpretations of natural language requirements can lead in inconsistent and
inaccurate results. Complex relationships can be difficult to capture. Requirements containing associations,
multiplicity or inheritance can be challenging and may result in incorrect or incomplete class diagrams.

To resolve these issues machine learning approaches or hybrid approaches are used that combines
both rule based and machine learning approaches.
1.3. Motivation and Problem Statement

The goal of this research study is to develop a system for the generation of class diagram using
machine learning by identifying the type of relationship among classes as well as with the help of some
NLP and rule based approaches so that it can help software designers and researchers to generate UML
class diagrams effectively.
1.4. Contributions

This research study enabled us to propose a model to generate class diagrams from textual
requirements using NLP and machine learning. The main target of the research is to extract relationships
among classes particularly association, inheritance, aggregation and composition. A dataset is created to
implement the machine learning models.

2. Related Work

Many methods and tools have been proposed in literature in the last years for creating UML class
diagrams from NL requirements. Here the evaluation of some of these approaches is presented.

Bashir and Bilal [6] proposed a system called Requirements Engineering Analysis and Design (READ)
to transform natural language requirements to UML class diagrams. They used the technique of NLP as
well as domain ontology. This system was implemented in Python to generate class diagram by extracting
classes, attributes and methods successfully. The authors implemented the feature of strong and weak
threshold to refine the elements.

Abdelnabi et al. [12] studied and analyzed the existing tools and approaches for efficiency,
completeness and automation degree. Authors identified the strengths as well as weaknesses of these
models. All these models used different techniques and rules to extract different elements of class diagram.

Abdelnabi et al. [9] proposed a process to generate class diagrams from natural language
requirements with the use of NLP technique and some heuristic rules for transformation process. The
suggested approach works in five different phases. The methodology uses NLP technique and type
dependency for parsing the natural language specifications. The approach generates class diagrams by
extracting a variety of class elements like classes, attributes, methods and different types of relationships
like associations, aggregations, composition, generalization, and multiplicity.

Nasiri and Rhazali [11] proposed a model based on transformation from computation independent
model to platform independent model. For these transformations they created a platform that generates

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

class diagram from requirements written in natural language. For extracting the class elements, they used
a tool called Stanford CoreNLP [13] the technique got the advantage of treating sentence structure of
different types. Moreover, it manages the compound nouns for the extraction of classes efficiently.

Hnatkowska et al. [14] proposed a method to construct conceptual model using data frames. The data
is analyzed and functional dependencies of data are recorded. This analyzed data helps in identifying
classes, attributes of classes and their relationships. The explanation of method was given through a case
study by real data sets processing. The quality of conceptual model depends mainly upon the quality of
input data. This model facilitates in two perspectives, first it checks data quality and second it finds
relationships among entities.

Utama and Jang [15] designed an algorithm that takes natural language problem statement as input
and generates class diagram out of it. As class diagram comprises of class names, attributes and operations,
hence this algorithm extracts all the mentioned components. The algorithm was evaluated by taking five
statements from different context and class diagram was generated. This approach has recall value of 100%
and precision of 92%.

Mohanan and Samuel [16] developed a tool called SUCM for the transformation of natural language
requirement specification document to class diagram. The tool extracts the components of UML diagram
for the generation of class diagram. But it does not represent all the aspects of system as it only supports
the generation of class diagram which shows only the static aspect of system.

Jaiwai and Sammapun [17] proposed in their research an approach for the transformation of
requirements from Thai language into UML class diagram. Few rules are formulated which are used for
the extraction of classes and their attributes from requirements written in natural language. There are flaws
in this model, it was unable to extract the operations and all types of relationships of class diagram. There
is a need for other rules and pattern able to extract operations and relationships for class diagram
completion.

Narawita and Vidanage [18] modified and reconstructed the UML Generator as it faced many
problems and challenges. At present the UML Generator is intelligent enough to obtain the UML elements
and is able to generate Use Case diagram as well as class diagram from user input resulting in the less time
and cost from user and system analyst. Furthermore, as the system generates both the use cases and class
diagrams, hence it provides both dynamic and static aspect of the system.

Zhong et al. [19] proposed an approach to automatically generate systems diagrams from natural
language requirements. The researches proposed open domain and flexible approach. The prosed
approach consists of six steps which leverage open-access tools and results in the generation of SysML
diagrams. The approach uses set of five Hyperparameters specified by the user. The researchers used six
case studies from different sources as input to show the benefits and applicability of the approach.

Zhang et al. [20] used the SemEval-2010 Task 8 database to evaluate a learning model. This dataset
has 9 relation types and one “other” type. The nine types are Product-Producer, Cause-Effect, Content-
Container, Instrument-Agency, Entity-Origin, Message-Topic, Component-Whole, Entity-Destination, and
Member-Collection. Considering active and passive nature, the nine relation types are directed and the
‘other’ which is non-directional, makes a total of 19 types of relations. SemEval-2010 Task 8 dataset has
2717 sample test sets and 8000 sample training sets.

Yang and Sahraoui [21] presented a fully automated approach for the generation of class diagrams
from natural language requirements. The proposed approach is based on natural language patterns as well
as machine learning. For the machine learning models, authors have also created a dataset of 62 labeled
diagrams that contain 624 fragments. The dataset does not contain labels for types of relationships. The
proposed approach showed low precision and recall but it was a good benchmark for machine learning-
based class diagram generation.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

Patel and Priya [22] aimed to resolve the issue of ambiguity found in natural language. They aimed
to take requirement specification as textual information, remove the ambiguity and uncertainty found in
natural language, and then identify the components required to generate UML diagrams. There are
different types of ambiguities but in the paper, the authors provided an approach to resolve Referential
and Coordination ambiguities. Other types of ambiguities still need to be resolved.

Shweta et al. [23] developed a transformer based model to extract the components of class diagram
from natural language requirements as these models generate context-dependent embedding. The results
of this model were compared with the existing procedure and 9-7% enhancement was observed.

Malik et al. [24] proposed an automated approach to generate use case diagrams independent of the
formalism. The approach employs a combination of NLP and network science to produce primary and
external actors. It produces results in three phases, of which two use NLP and the third uses network
science to generate results.

Ouaddi et al. [25] explored the advancements in the field and proposed an approach to extract the
use-case diagram from natural language requirements using a chatbot. They used chatbot for the
accomplishment of tasks like text summarization and analysis.

Almazroi et al. [26] proposed a method to present the class diagram according to the defined
configuration and to extract the relationship between textual instruction and UML class diagram. They
enabled the developers to analyze the requirements efficiently by utilizing NLP.

3. Methodology

It is very important to develop a system that can generate class diagrams from requirements
effectively and accurately. As there exists no such considerable system that incorporate relationship types
for generating class diagrams using machine learning. Hence we developed a machine learning model for
the prediction of relationship types so that the class diagrams can be generated more effectively. We used
hybrid approach for overall class diagram generation task. It includes Rule based NLP approach as well as
machine learning model. The whole process consists of following modules. Input Acquisition module, NLP
module, Machine learning module, Knowledge extraction module, and Class diagram generation module.
3.1. Input Acquisition Module

As the class diagrams will be generated from textual requirements provided by the user hence the
very first step of our approach is getting input from user in the form of textual requirements written in
English language. Input Acquisition module will enable user to input different case studies or scenarios as
requirements for class diagram generation.
3.2. NLP Module

The input that is provided in Input Acquisition module will then enter in NLP module. The main
purpose of NLP is to make computers able to understand and process text. To understand a text means to
recognize the actual context, to perform semantic, syntactic, and lexical analysis, to create summary and
extract information. The information extracted by NLP will be used by knowledge extraction module for
further processing. NLP module performs its task in different steps by using different NLP approaches [9].
These approaches are the vital part of NLP module. The preprocessing techniques that are used by our
NLP module are discussed below.
3.2.1. Spelling Checking and Correction

The first and most basic step in NLP is spelling checking and correction. Spell checking system enables
us to check and find any misspelled words in the user input. If any word is found misspelled, it correct
that misspelled word. Spell checking system can also suggest list of corrections for the misspelled word.
For example if the user enters a misspelled word “wlak” instead of “walk”, the spell checking system will

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

correct the mistake and make that word “walk”. We can also get the list of suggested words for correction.
The list of candidate words will be displayed like {‘walk’, ‘weak’, ‘flak’}.

For spell checking and correction purpose python package ‘pyspellchecker’ is used. This package
provides the facility to find and correct misspelled words. The ‘spellchecker’ library uses a pre-built
dictionary for the identification and correction of errors. The library is specially designed to handle spelling
correction tasks. It functions independently and does not depends on any external lexical resources like
WordNet.
3.2.2. Tokenization

Tokenization is the process in which the text which is generally in the form of sentence is split in
sequence of tokens like words. After spelling correction tokenization is the main step in NLP processing
pipeline. Tokens are considered as atomic units in processing. These can be words or subword units called
morphemes or even individual characters. For example, if we input the statement “Teacher teaches the
students” the tokenization module will split this into tokens as <Teacher> <teaches> <the> <students>.

In the proposed system we have implicitly performed tokenization as part of spaCy processing
pipeline which is a good approach for solving problems.
3.2.3. Lemmatization

Lemmatization groups together different transformed forms of same word. It is widely used in NLP.
Lemmatization reduces the word to its root form. Another approach ‘stemming is also used for same
purpose. But stemming is heuristic approach and can result in wrong or nonsensical words. On the other
hand lemmatization analyzes the contextual meaning, structure and intended POS to generate accurate
and meaningful results. Therefore lemmatization is often preferred instead of stemming.

Lemmatization is performed using spaCy. spaCy focuses on lemmatization as it is more advanced
and accurate technique to reduce words to dictionary forms. For example, in a sentence the word “teach”
can appear in different forms like “teaches”, “taught” and “teaching”. Lemmatization groups all these
words as a single word teach.
3.2.4. POS tagging

The last step of NLP module is ‘Parts of Speech’ tagging. This phase works on the output of
lemmatization. It assigns a Part of Speech category to each lemmatized token in a text e.g. noun, verb,
adjective, preposition etc. The spaCy library is used for POS tagging. The en_core_web_sm model is an
English Pretrained model. It allows to perform different tasks like POS tagging without need to train own
model. For example, the POS tagging model will assign tags to statement tokens “Teacher teaches
students” as “teacher/NN teach/VB student/NN. The description of each tagging symbol is explained in
Appendix 0-I of APPENDICES Section. Figure 4.1 and 4.2 show result of NLP module.
3.3. Machine Learning Module

In the era of digitization, where data is accumulated at an exceptional speed, the capability to extract
meaningful insights and predictions from this data has become paramount. Machine learning encompasses
various techniques, including supervised learning (where models learn from labeled data), unsupervised
learning (where models identify patterns without labeled data), semi-supervised learning (Where models
learn with some labeled and a lot of unlabeled data) and reinforcement learning (where models learn by
interacting with an environment). We have used supervised learning method in machine learning module.
Supervised learning models require the labeled output variable as well as input variable for training
samples. Hence each training sample consists of a pair of input and output variable values. The dataset
that we created for machine learning module also consists of input and output pairs. The two class names
are input for the model while the relationship between those classes is the output value. The model is
trained for the prediction of relation among classes that are extracted from NLP knowledge extraction

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

module. In machine learning module we have used different algorithms to get a good result. Here we will
describe the overall steps in machine learning modules as well as the algorithms that we tried and tested.
3.3.1. Dataset Analysis

The dataset that we created consists of an Excel file containing three columns: Class 1, Class 2, and
Relationship. The Class 1 and Class 2 columns represent the names of two classes involved in a
relationship, while the Relationship column denotes the type of relationship between them. There are four
relationship types that we collected in dataset. These are association, aggregation, composition, and
inheritance. Dataset contains 2109 elements containing 482 association, 434 aggregation, 620 composition,
and 573 inheritance relationships.
3.3.2. Dataset transformation/preparation

The next step in machine learning is data transformation / preparation. As mostly machine learning
models cannot operate on categorical variables. They require numerical variables for their operation. We
have used a combination of both label encoding and one hot encoding. One hot encoding was used for
input variables i.e. class1 and class 2.While label encoding was employed for output variable i.e.
Relationship. The reason why we used one hot encoding for class data is that it efficiently transforms
categorical data into binary format which allows for distinct representation of each class in a
multidimensional feature space. On the other hand, our decision to use label encoding for relationship
labels preserves the inherent order or hierarchy of relationship types, which is particularly relevant in
scenarios where the relationship types hold a specific ranking or importance. To perform one hot and label
encoding we used the scikit-learn library. The library is a powerful tool for machine learning as it provides
a wide range of algorithms for preprocessing as well as for machine learning.
3.3.3. Dataset splitting

As in ML module we have created a single dataset, hence the next step is to split the dataset in 2
smaller parts. These are train and test split. For this purpose we split the dataset that we created into two
subsets. The division for this purpose was is done in proportions as 80% train data and 20% test data.
3.3.4. Machine Learning Algorithms Used

In this section we will explain which have been the three algorithms that have been tried in order to
solve this problem. Here, the theory and the implementation are discussed, while the results of their
implementation will be discussed in next chapter.

● Random Forest Classifier
� Algorithm
The Random Forest classifier, a prominent ensemble learning technique, has been adopted as a

essential component of our methodology. Comprising multiple decision trees, the Random Forest
algorithm effectively mitigates overfitting and enhances predictive accuracy through the wisdom of the
crowd. Each decision tree is constructed on a subset of the training data, introducing diversity in the
model's learning process. Subsequently, predictions from individual trees are integrated using majority
voting, ultimately yielding a consolidated and reliable prediction [27]. This ensemble approach enables our
model to capture intricate relationships within the dataset, contributing to its robustness and adaptability
to complex scenarios. Greater the number of trees in forest higher is the accuracy and lower the problem
of over fitting.

The working of Random Forest classifier is explained in figure 3.1 below.
� Implementation
In our code implementation, The Random Forest model is trained using the fit method on the encoded

features (x_enc) and target labels (y_enc). The predict_proba method is used to obtain class probabilities
for each instance in the training data. We instantiated a Random Forest classifier with hyperparameters
such as 'n_estimators' and 'max_depth', controlling the number of trees in the forest and the depth of

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

individual trees respectively. By training the Random Forest on our preprocessed class features and
utilizing its 'predict_proba' function, we obtained class probability estimates for our machine learning
model. Overall, the integration of Random Forest classifier enhances the accuracy of our classification
model and contributes to the stability of the results.

● Multinomial Naïve Bayes Classifier
� Algorithm

Figure 2. Working of Random Forest Classifier

The Naive Bayes algorithm, rooted in probabilistic principles, plays a pivotal role in our methodology
as an elegant solution for multi-class classification. Its foundation lies in Bayes' theorem, a fundamental
theorem in probability theory. Naive Bayes leverages this theorem to estimate the probability of a certain
class given the observed feature values, incorporating the assumption of feature independence.

Mathematically, for a given set of class labels (y) and features (x₁, x₂, ..., xₖ), the Naive Bayes classifier
calculates the posterior probability of a class given the features as:

𝑃 " !
	#₁,#₂,…,#ₖ)# =

)*!
"
+×)*

!$
+×…×)(

!ₖ	
)×)(!)

)(#₁,#₂,...,#ₖ) (1)

In this equation, P(y | x₁, x₂, ..., xₖ) represents the probability of classy given the feature values, and
P(xᵢ | y) represents the probability of feature xᵢ given classy. The naive assumption of feature independence
allows us to factorize the joint probability P(x₁, x₂, ..., xₖ) as a product of individual probabilities [28] [33].

� Implementation
In our implementation, the Multinomial Naive Bayes variant is employed, which is tailored for

discrete features like word frequencies in text classification. The classifier is initialized, and the fit method
is used to train the model on the training data.

The combined methodology utilizes the strengths of both the Random Forest and Multinomial Naive
Bayes algorithms for relationship prediction. The Random Forest model provides a powerful ensemble
approach, while the Naive Bayes classifier brings probabilistic modeling capabilities. . The accuracy and
generalization of the models are assessed using the test data split. This approach aims to accurately predict
relationships between entities, contributing to the field of machine learning and data analysis.

● SVM
� Algorithm
The second algorithm that we tried is SVM or Support Vector Machine. SVM is a well-known

Supervised Learning algorithm. It is used to solve classification and also the regression problems. In
Machine Learning, it is basically used for classification problems. SVM algorithm aims at creating a
decision boundary or a best line boundary, which can separate n-dimensional space into classes for us to
place the new data point in the right category easily later on. These best line boundaries are called a

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

hyperplane. SVM selects the vectors/ extreme points which assist in creating the hyperplane. These points
are known as support vectors, coining the term Support Vector Machine for the algorithm [29] [32].

Mathematically, given a set of training examples represented as pairs of feature vectors (xᵢ) and
corresponding labels (yᵢ), where i = 1, 2, ..., n, and yᵢ ∈ {-1, 1} for binary classification or yᵢ ∈ {1, 2, ..., K} for
multi-class classification, the SVM aims to solve the optimization problem:
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	 /

0
||𝑤||0 + 𝐶∑ ⬚⬚

2 	𝜉ᵢ (2)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:		𝑦ᵢ(𝑤. 𝑥ᵢ	 − 	𝑏) ≥ 	1	 − 	𝜉ᵢ, ∀ᵢ = 1,2,3, … , 𝑛 (3)
𝜉ᵢ	 ≥ 	0, ∀ᵢ = 1,2,3, … , 𝑛 (4)

Here, w is the weight vector that defines the hyperplane, b is the bias term, C is a regularization
parameter controlling the trade-off between maximizing the margin and minimizing the classification
error, and ξᵢ are slack variables that allow for misclassifications. The SVM aims to minimize the L2-norm
of w while ensuring that each training example is correctly classified or within a certain margin. The below
figure 4.9 shows two categories which are classified using a hyperplane.

Figure 3. Classification using Hyperplane

� Implementation
In our implementation, SVM was chosen as a robust model to predict the relationship types based on

the class features. Utilizing libraries such as scikit-learn, we instantiated an SVM classifier and explored
different kernel functions, such as linear and radial basis function (RBF), to tailor the model to our dataset's
characteristics. Through feature preprocessing, including one-hot encoding for class features and label
encoding for relationship types, we prepared the data for SVM training. The SVM's inherent ability to
capture complex decision boundaries was instrumental in effectively categorizing relationship types based
on the provided class information.

● KNN
� Algorithm
K-Nearest Neighbors (KNN) is a versatile and intuitive classification algorithm that excels in

scenarios where data points with similar features tend to share the same labels. At its core, KNN predicts
the label of a data point by examining the labels of its k-nearest neighbors in the feature space [30]. The
algorithm's simplicity lies in its reliance on local information to make predictions, making it robust in
handling complex decision boundaries and non-linear relationships.

� Implementation
In our implementation, the KNN algorithm played a pivotal role in predicting relationship types

based on the provided class features. Following a preparatory step where we split our data into training
and testing sets, we instantiated the KNeighborsClassifier from scikit-learn. The parameter 'n_neighbors'

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

was set to 100, indicating that the classifier would consider the labels of the 100 nearest neighbors when
making predictions.
3.4. Knowledge Extraction Module

In knowledge extraction module components of class diagram i.e. class names, methods and
relationship types are identified. This modules takes the output of NLP and machine learning dataset as
input for the extraction of class components. Knowledge extraction module has three phases.
3.4.1. Class Extraction

In the first step of knowledge extraction module, classes are identified. Classes are generally extracted
from nouns. Hence all the common noun <NN> and proper noun <NNP> (e.g. human, system) tags are
extracted mapped as classes.

In a sentence of the form (Sub-Verb-Obj); the subject and object are extracted and mapped as classes.
In a noun phrase like (Noun +Noun); the first noun is mapped as a class e.g. “Patient Name”

3.4.2. Methods Extraction
Methods identified by the system are the verb phrases of the sentence associated with the class in the

form NP: VP.
In a verb phrase which consists of a lexical verb associated with a noun, then the verb is mapped as a

method of the noun which is a class.
In a verb phrase which consists of an action verb associated with a noun, then the verb is mapped as

a method of the noun which is a class
In a sentence of the form (NN + VB + NN + NN + NN) the VB is mapped as candidate method of the

class.
Verb phrases of the form (VB + NN) are mapped as candidate methods of the subject as class.

3.4.3. Attribute Extraction
All the adjectives in a sentence in the form of <JJ> tag are extracted and mapped as attribute of the

class.
In a noun phrase like (Noun +Noun); if first noun is a class then second noun will be mapped as class

attribute e.g. “Patient Name” Attributes are also identified by common nouns as well as nouns that come
after possessive pronoun <PP$> tag.
3.4.4. Relationship types Extraction

The type of relationship is extracted by machine learning module. The classes that are identified above
using rules are passed to machine learning module. The classifier that we developed will be applied on
these classes and based upon the experience it gained through training data, it will predict the type of
relationship among these classes.

For example the predicted relationship type between class “Human” and “Heart” is “Composition”
as predicted by the generated classifier model. Figure 4.10 shows the predicted relationship type among
“Human” and “Heart”

3.5. Diagram Generation Module
The final phase of the proposed system is Class Diagram generation. The knowledge extracted in

previous phase becomes the input of diagram extraction module. By using class names and relationship
types, the module generates class diagram in the format of plan UML diagrams.

The system then shows a success message and asks to save the diagram in system. On confirmation
our system generates a file in the format. wsd which can be opened in VS code and diagram can be
visualized.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

4. Results and Discussions
At initial we employed the ML models directly after generating features through encoders and

implementing train test split model. The models employed in this way did not performed up to the mark.
The accuracy obtained by different models is presented in Table 4.1.

Table 2. Results of ML models without using Random Forest Classifier
Data split

(Train: Test)
Multinomial
Naïve Bayes

SVM KNN

90:10 62 63 43
80:20 61 62 37
70:30 56 58 40

As it can be clearly seen through the table that none of the model showed good accuracy while the
KNN model performed the least. To solve the issue we combined these models with Random Forest
classifier is particularly designed in a way that it enhances accuracy by using multiple decision trees.
4.1. Results of ML models without Random Forest Classifier

Figure 4. Bar Graph showing results of ML models without Random Forest Classifier

4.1.1. Confusion Matrix for SVM:
The confusion matrix for SVM without applying Random Forest Classifier is as below:
[[23 5 18 3]
 [5 33 2 7]
 [10 8 36 2]
 [1 16 0 42]]

4.1.2. Number of Inaccurately classified records:
As the accuracy of models without applying random Forest Classifier was low hence the number of

records that were inaccurately classified by the models was high. The number of inaccurately classified
records for SVM for 90:10 train test split is 77.

Number of records inaccurately classified by SVM: 77
4.2. Results of ML models combined with random forest classifier

As the accuracy of models was not good at initial employment, hence we combined these models with
Random Forest classifier. . By training the Random Forest on our preprocessed class features and utilizing

0

10

20

30

40

50

60

70

MultinomialNB SVM KNN

Results of ML models without Random
Forest Classifier

(90:10) (80:20) (70:30)

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

its 'predict_proba' function, we obtained class probability estimates for our machine learning model. The
combined models showed enhanced accuracy as shown in Table 5.2 below.

Table 3. Results of ML models combined with random forest classifier
Data split

(Train: Test)
Multinomial Naïve Bayes SVM KNN

90:10 95 96 95
80:20 95 95 95
70:30 94 94 93

Figure 5. Bar Graph showing results of ML models with Random Forest Classifier

4.2.1. Confusion Matrix for Naive Bayes
The confusion matrix for Naïve Bayes after applying Random Forest Classifier is as below:
[[72 0 17 0]
 [1 97 0 0]
 [0 0 124 0]
 [0 0 0 111]]

4.2.2. Number of Inaccurately classified records
As the accuracy of models after applying random Forest Classifier was high hence the number of

records that were inaccurately classified by the models was less. The number of inaccurately classified
records for Naïve Bayes is 18.

Number of records inaccurately classified by Naive Bayes: 18.
4.2.3. Records inaccurately classified by Naive Bayes

array(['Aircraft', 'Album', 'Assignments', 'Attendees', 'Bank','CameraDemo', 'Canary', 'Catalogs',
'Check Damage','Checking with Interest', 'Company', 'Composition layer','Crankshaft', 'Degree', 'Display',
'Elephant','ElevatorButton','Enrollment'], dtype=object).

4.3. Comparison of MultinomialNB, SVM and KNN models
There are multiple performance measurement matrices that can be used to evaluate performance of

ML tools. We used three measures i.e. accuracy, precision and recall. The comparison ML models in terms
of performance measures is presented in Table 5.3 below.

Table 4. Comparison of MultinomialNB, SVM and KNN models
Model Accuracy Precision Recall

91.5
92

92.5
93

93.5
94

94.5
95

95.5
96

96.5

MultinomialNB SVM KNN

Results of ML models combined with
Random Forest classifier

(90:10) (80:20) (70:30)

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

Multinomial NB 95 95 95
SVM 95 95 95
KNN 95 96 95

Figure 6. Comparison of MultinomialNB, SVM and KNN models in terms of performance

4.4. Summary
The UML Class diagram plays a vital role in Object Oriented design. It serves as a building block and

represents the structure of a system. Class diagrams are generated from requirements written in natural
language. The process of manual class diagram generation can be highly challenging and error-prone. This
is because generating class diagrams is a time consuming process. Moreover due to ambiguous nature
different interpretations of natural language requirements can lead in inconsistent and inaccurate class
diagrams. These challenges demand the automation of this process to mitigate the problems. Automation
of class diagrams generation has many key benefits. It saves time of the designers, ensures the consistency
and accuracy and support maintenance. This automation of UML class diagrams is itself very difficult and
challenging task. However many techniques and approaches have been proposed to resolve the problem.
Natural language processing techniques, Rule based techniques and machine learning based approaches
are remarkable ones. In this research work our main focus was to develop a system for the generation of
class diagram using machine learning as well as with the help of some NLP and rule based approaches.
Our system takes natural language requirements as input and after applying combination of NLP, Rules
based and machine learning approaches it generates a class diagram. The salient feature of this research
study was the creation of dataset to be used in machine learning models to train a classifier that can predict
the relationship types of class diagram. The identification of the relationship type in a class diagram is
important as they help users to understand the interaction between different classes. Our system focuses
on four relationship types. These are association, aggregation, composition and inheritance. The system is
evaluated using evaluation metrics.

5. Future Work

The purpose of the proposed system is to generate the class diagram using machine learning that
incorporate the identification of relationship types. The scope of proposed system is limited to

93

93.5

94

94.5

95

95.5

96

96.5

Multinomial	NB SVM KNN

Comparison of MultinomialNB, SVM and
KNN models in terms of performance

Accuracy Precision Recall

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

identification of association, aggregation, composition and inheritance. As the created dataset contain these
four relationship types. If more relationship types include in machine learning dataset they can predict all
relationship types and can generate more accurate class diagrams. Furthermore the correctness of class
diagram produced by our system is limited and it can be explained as we used limited NLP tools and rules
for identification of classes. By normalizing the input sentence and by adding more patterns to rule based
part we can improve the work. From a broader perspective our approach work as a baseline for researchers
to generate more accurate and comprehensive system. The dataset we presented can serve as the
foundation for researchers and can be used in automatic class diagram generation.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

References
1. Deeptimahanti, D. K., & Babar. M. A., (2009). “An Automated Tool for Generating UML Models from Natural

Language Requirements, in ASE2009” - 24th IEEE/ACM International Conference on Automated Software
Engineering. https://doi.org/10.1109/ASE.2009.48.

2. Overmyer S., Lavoie B. and Rambow O. (2001). “Conceptual Modeling through Linguistics Analysis Using LIDA."
The 23rd Int. Conf. on Soft. Eng. (ICSE’01), Canada, pp. 401-410.

3. Harmain, H., & Gaizauskas, R. (2003). “CM-Builder: A Natural Language-based CASE Tool.” Jou. of Auto. Soft.
Eng., vol. 10(2), pp. 157-181.

4. Herchi, H., & Abdessalem, W. (2012). “From user requirements to UML class diagram.” Int. Conf. on Comp. Related
Knowledge (ICCRK’ 2012), Tunisia.

5. Perez-Gonzalez, H. & Kalita, J. (2002). “Automatically generating object models from natural language analysis” in
Companion of the 17th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pp. 86-87.

6. Bashir, N., Bilal, M., Liaqat, M., Marjani, M., Malik, N., Ali, M., (2021). “Modeling Class Diagram using NLP in
Object-Oriented Designing.

7. Joshi, S. D., & Deshpande, D. (2012). “Textual Requirement Analysis for UML Diagram Extraction by using NLP.”
International Journal of Computer Applications (0975 – 8887) Volume 50 – No.8, July 2012.

8. Hamza, Z. A., & Hammad, M. (2019). "Generating UML Use Case Models from Software Requirements Using
Natural Language Processing." in 2019 8th International Conference on Modeling Simulation and Applied
Optimization (ICMSAO), 2019, pp. 1-6: IEEE.

9. Abdelnabi, E. A., Maatuk. A. M., Abdelaziz, T. M., & Elakeili, S. M. (2020). “Generating UML Class Diagram using
NLP Techniques and Heuristic Rules.” 20th international conference on Sciences and Techniques of Automatic
control & computer engineering (STA), Sfax, Tunisia, December 20-22, 2020.

10. More, P., & Phalnikar, R. (2012). “Generating UML diagrams from natural language specifications.” International
Journal of Applied Information Systems. 2012. 1, 8, pp. 19–23.

11. Nasiri, S., Rhazali, Y., Lahmer, M., Chenfour, N., (2020). “Towards a Generation of Class Diagram from User Stories
in Agile Methods” Procedia Computer Science 170 (2020) 831–837.

12. Abdelnabi, E. A., Maatuk. A. M., & Hagal. M. (2021). “Generating UML Class Diagram from Natural Language
Requirements.” A Survey of Approaches and Techniques.

13. Klein, D., & Manning, C. (2007). Stanford Parser 1.6. Stanford Natural Language Processing Group, City
14. Hnatkowska, B., Huzar, Z., and Tuzinkiewicz, L. (2020). “A Data-Driven Conceptual Modeling. In Integrating

Research and Practice in Software Engineering.” (pp. 97-109). Springer, Cham.
15. Utama A. Z. & Jang D.-S. J. J. o. K. M. S., "An Automatic Construction for Class Diagram from Problem Statement

using Natural Language Processing," vol. 22, no. 3, pp. 386-394, 2019.
16. Mohanan, M., & Samuel, P. (2018). “Natural Language Processing Approach for UML Class Model Generation from

Software Requirement Specifications via SBVR.” International Journal on Artificial Intelligence tools, Vol 27, No.
06, 1850027, 2018.

17. Jaiwai, M., & Sammapun, U. (2017). “Extracting UML class diagrams from software requirements in Thai using
NLP.” 14th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 1-5). IEEE.

18. Narawita, C. R., & Vidanage, K. (2017). “UML Generator – Use Case and Class Diagram Generation from Text
Requirements.” International Journal on Advances in ICT for Emerging Regions, 2017, 10 (1).

19. Zhang, R., Meng, F., Zhou, Y., & Liu, B. (2018). "Relation classification via recurrent neural network with attention
and tensor layers," Big Data Mining and Analytics, vol. 1, pp. 234-244, 2018.

20. Zhong, S., Scarinci, A., Cicirello, A. (2023) “Natural Language Processing for systems engineering: Automatic
generation of Systems Modelling Language diagrams.” Knowledge-Based Systems 259 (2023) 110071, pp. 1-18.

https://doi.org/10.1109/ASE.2009.48

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 546-0702/2024

21. Yang, S., & Sahraoui, H. (2022). “Towards Automatically Extracting UML Class Diagrams from Natural Language
Specifications.” In ACM/IEEE 25th International Conference on Model Driven Engineering Languages and Systems
(MODELS ’22 Companion), October 23–28, 2022, Montreal, QC, Canada.

22. Patel, G. A., & Priya, A. S. (2014). “Resolve the Uncertainty in requirement Specification to generate the UML
Diagram.” IEEE - International Conference on Advances in Engineering and Technology-(ICAET 2014).

23. Malik, M.I., Sindhu, M.A. and Abbasi, R.A. (2023), “Extraction of use case diagram elements using natural language
processing and network science”, PLoS ONE, Vol. 18 No. 6. https://doi.org/10.1371/ journal.pone.0287502.

24. Shweta, X., Suyash, M., & Suryansh, C. (2023). Advancing Class Diagram Extraction from Requirement Text: A
Transformer-Based Approach. In Proceedings of the 20th International Conference on Natural Language Processing
(ICON) (pp. 433-441).

25. Ouaddi, C., Benaddi, L., Souha, A., Jakimi, A., & Ouchao, B. (2024). A sketch of an approach for discovering UML
use-case diagrams from textual specifications of systems using a chatbot. In 2024 IEEE 12th International
Symposium on Signal, Image, Video and Communications (ISIVC) (pp. 1-6). IEEE.

26. Almazroi, A. A., Abualigah, L., Alqarni, M. A., Houssein, E. H., AlHamad, A. Q. M., & Elaziz, M. A. (2021). Class
diagram generation from text requirements: An application of natural language processing. Deep Learning
Approaches for Spoken and Natural Language Processing, 55-79.

27. Raza, A., Siddiqui, HUR., Munir, K., Almutairi, M., Rustam, F. (2022). “Ensemble learning-based feature
engineering to analyze maternal health during pregnancy and health risk prediction.” PLOS ONE 17(11): e0276525.

28. Rish, I. (2001). “An empirical study of the naive Bayes classifier” IJCAI 2001 workshop on empirical methods in
artificial intelligence 3 (22), 41-46.

29. Ejaz, F., Tanveer, F., Shoukat, F., Fatima, N., & Ahmad, A. (2024). Effectiveness of routine physical therapy with or
without home-based intensive bimanual training on clinical outcomes in cerebral palsy children: a randomised
controlled trial. Physiotherapy Quarterly, 32(1), 78-83.

30. Shah, A. M., Aljubayri, M., Khan, M. F., Alqahtani, J., Sulaiman, A., & Shaikh, A. (2023). ILSM: Incorporated
Lightweight Security Model for Improving QOS in WSN. Computer Systems Science & Engineering, 46(2).

31. Evgeniou, T., & Pontil, M. (2001). “Support Vector Machines: Theory and Applications.” 2049. 249-257. 10.1007/3-
540-44673-7_12.

32. Khan, M. F., Iftikhar, A., Anwar, H., & Ramay, S. A. (2024). Brain Tumor Segmentation and Classification using
Optimized Deep Learning. Journal of Computing & Biomedical Informatics, 7(01), 632-640.

33. Guo, G., Wang, H., Bell, D., & Bi, Y. (2004). “KNN Model-Based Approach in Classification.”
34. Imran, A., Li, J., Pei, Y., Akhtar, F., Yang, J.-J., & Dang, Y. (2020). Automated identification of cataract severity using

retinal fundus images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization,
8(6), 691-698. Taylor & Francis.

35. Latif, J., Xiao, C., Tu, S., Rehman, S. U., Imran, A., & Bilal, A. (2020). Implementation and use of disease diagnosis
systems for electronic medical records based on machine learning: A complete review. IEEE Access, 8, 150489-
150513. IEEE.

