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Abstract: Malware, also referred to as malicious software, encompasses software deliberately de-
signed to disrupt or harm the normal operations of a computer system. There has been a surge in 
malware attacks in recent times, resulting in substantial financial losses for various entities such as 
enterprises, governments, financial institutions, healthcare providers, and others. This surge is at-
tributed to the ease with which the reuse of scripts can generate novel forms of malware. Effective 
antivirus software relies on the classification of malware to safeguard against such attacks. Previ-
ous studies have employed both static and dynamic assessments; however, these approaches ex-
hibit notable limitations in the context of reverse engineering. In this research, we introduce 
DenseMal, a visually-assisted malware classification system. It stands out for its rapid and accu-
rate classification capabilities. Through a comprehensive evaluation on the publicly accessible 
MalIMG dataset, we scrutinized various approaches and their classifiers. DenseMal utilizes a con-
trast-limited adaptive histogram equalization method on images of malware samples to enhance 
the similarity between components belonging to the same malware family. This enhancement sig-
nificantly boosts DenseMal's precision in identifying malware families. To ensure the efficacy of 
our framework, we initially developed a proof-of-concept implementation, subjecting it to metic-
ulous testing. The results of extensive testing affirm that DenseMal adeptly classifies malware 
samples, achieving an average accuracy, precision, and recall of 96.79%, 89.91%, and 89.92%, re-
spectively. Moreover, security engineers benefit from a user-friendly visualization tool that lever-
ages DenseMal, facilitating further validation of its effectiveness. 
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1. Introduction 

Malware, in the current digital age, presents a significant danger by adjusting itself to bypass con-
ventional security procedures. Conventional techniques, such as signature-based detection, face difficul-
ties in keeping up with the swift development of novel strains. This constraint necessitates the use of a 
more dynamic methodology for the investigation of malware. The process of "malware image analysis" 
entails closely examining the visual characteristics of malware in order to identify and reveal subtle trends 
[1]. Our objective is to improve the process of identification by utilizing deep learning models to extract 
valuable information from these visual inputs. The paper investigates contemporary malware threats, 
identifies the constraints of current approaches, and introduces the incorporation of deep learning con-
cepts into cybersecurity. We want to narrow the divide between the development of malware and the 
need for flexible security solutions. 

This work employs deep learning to categorize malware image detection into five distinct groups. 
The picture recognition technique involves several phases. Every individual step is crucial in the process 
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of picture classification for the purpose of identifying malware images from various datasets. This method 
includes some stages: 

 
Figure 1. Classification of malware images Using DL Techniques 

 
1. Pre-processing: During this stage, the image undergoes resampling, noise reduction, and color correc-

tion to ensure a visually clear and consistent image [2] [3]. 
2. Segmentation: In the second stage, the virus is divided into segments using different methods and 

models, including MobileNet, DenseNet, Inception V3, VGG16, and VGG19 [4].  
3. Feature Extraction: At this stage, features are obtained by many methods, including the use of ABCD 

rules with a CCN-based model and a machine learning-based model [5].  
4. Feature Selection: Following feature extraction, we choose features for categorization [6]. This process 

involves feature normalization, feature reduction, feature scaling and so on [6, 7].  
5. Classification: During the last stage of image recognition pattern, we classified datasets into different 

categories of malware using a range of advanced deep learning models such as VGG16, Inception V3, 
and DenseNet [8]. 

Figure 1 demonstrates how malware image classification is done in different phases. The DenseMal 
Model employs malware images to accurately differentiate between 25 unique malware families, such as 
Yuner.A, Allaaple.A, VB.AT, and Instantaccess. The DenseMal model is capable of extracting prominent 
features of malware to aid in the identification of cyber pictures [9]. To create a reliable classifier, we re-
duce the total number of trainable parameters in the DenseMal model [10].  

The CNN model's accuracy is being negatively affected by the issue of class imbalance within the 
Malimg dataset. The issue at hand is closely linked to the challenges being encountered by the CNN 
model. For improving the accuracy of the DenseMal model, we utilize a technique called SMOTE Tomek 
[11] to increase the number of samples by combining them from the Malware photos in each class. The 
confusion matrix allows us to determine all the discernible properties linked with the categorization of 
Malware pictures. Proposed DenseMal demonstrated superior performance compared to six baseline 
classifiers, namely MobileNet, EfficientNet-B0, DenseNet, VGG16, VGG19, and InceptionV3, across var-
ious assessment measures such as accuracy (ACC), area under the curve (AUC), precision (PRE), recall 
(REC), loss, and F1-score. In comparison to the latest state-of-the-art (SOTA) classifications, the DenseMal 
model yielded significant and remarkable results. 
 
2. Literature Review  

Deep learning educates itself on the features of files by studying data sets that include malicious and 
harmless files. The fundamental process of IMCFN consists of two parts: the production of malicious 
images and the fine-tuning of CNN. As a potent instrument of artificial intelligence, seven has found use 
in a variety of domains, including voice recognition and picture recognition [12]. In addition, [13] devel-
oped a method for classifying malware that they dubbed MCSC. This method integrated malware classi-
fication and visualization with the methods of deep learning. They first retrieved the Opcode orders from 
the malicious program, and then they encrypted those commands using SimHash. The SimHash values 
were used as pixels, and the resulting pictures were transformed into a grayscale format [14]. Last but not 
least, they discovered families of malware by using CNN to train photos. Their technique was able to ob-
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tain an excellent classification rate for small-scale application settings; however, it was not applicable for 
usage in large-scale application environments where quicker virus detection was required. A paradigm 
for deep learning was developed by [15] that did not make use of reverse engineering. Despite using 
10,860 samples from 9 different malware families, their model obtained a classification accuracy of 96.79%. 

[16] Proposed a convolutional neural network (CNN) based deep learning framework for the identi-
fication of malicious software. Tests were conducted on 25 distinct malware families included in the 
Malimg dataset. Their model attained a precision rate of 98% when implemented on a dataset consisting 
of 9,339 samples. They conducted tests on only 10% of the samples from each family, which were selected 
randomly. 

[17] Explored the utilization of image-based techniques to identify potentially suspicious actions 
performed by systems. The authors suggested utilizing a fusion of hybrid image-based methodologies 
and CNN-based deep learning architectures to effectively classify malware. These strategies were pro-
vided as a method for detecting malicious software. Two CNN models were introduced: the Unidirec-
tional GRU (UniGRU) model and the Bidirectional GRU (BiGRU) model [18]. In addition, they evaluated 
and contrasted the efficacy of these models with that of other contemporary CNN architectures, such as 
the Unidirectional LSTM (UniLSTM) and the Bidirectional LSTM (BiLSTM). The experiments were con-
ducted on two publicly available datasets: the Microsoft Malware Classification Challenge (BIG, 2015) 
dataset and the Malimg dataset. Their model attained an average accuracy of approximately 96%; yet, it 
failed to consider the time spent on overhead tasks [19]. This review seeks to elucidate the recent break-
throughs and significant results in the realm of cybersecurity by analyzing and contrasting various 
methodologies. 
 
3. Materials and Methods 

The DenseMal model, along with six other popular deep learning classifiers (including MobileNet, 
DenseNet, VGG16, VGG19, inceptionV3, EfficientNet-B0), underwent comprehensive testing utilizing the 
experimental technique outlined in this section. 
3.1. Dataset Description 

The goal of our study involved utilizing a Malimg primary dataset obtained from Kaggle [20], which 
is a publicly accessible dataset specifically employed for this research. The dataset contains a comprehen-
sive collection of malware images from different types. The images are divided into training, testing, and 
validation folders using dataset class subfolders, with a split ratio of 70/20/10. The collection consisted of 
three categories of malware pictures, including Yuner.A, Allaaple.A, and VB.AT, along with others such 
as Instantaccess. The dataset comprises 25 distinct classes and a total of 9339 samples. 
3.2. Workflow of proposed DenseMal 

The proposed project entails creating a model using a (CNN) Convolutional Neural Network struc-
ture to classify lung nodules as either malignant or benign. The initial stage entails gathering malware 
photos and preparing them using data rescaling and implementing data augmentation techniques to im-
prove the quality of the data. Data normalization is conducted to shrink and standardize the data. SMOTE 
Tomek is employed to achieve dataset balancing in the context of image data. 

The model is subsequently trained on the latent patterns in the data, utilizing 70% of the data for this 
purpose. Testing is conducted on 20% of the data, while 10% of the data is reserved for model validation. 
The CNN architecture comprises five layers and 64 nodes, with a kernel size of 3x3 and a max pooling2D 
layer. The softmax activation function is employed at the output layer to perform binary classification. 
The objective of the proposed study is to enhance the precision of classifying malware photos by em-
ploying convolutional neural network (CNN) techniques and classification algorithms that are compatible 
with constrained computational resources. 
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Figure 2. Proposed Model 
The suggested technique utilizes Convolutional Neural Networks (CNNs) to accurately detect and 

classify images of malware. A Convolutional Neural Network (CNN), which is a type of DenseMal model, 
excels in the task of image processing and classification. Convolutional neural networks operate by se-
quentially applying convolutional and pooling layers to an input picture, thereby extracting progressively 
intricate information from the image. Subsequently, the CNN's output is commonly directed into one or 
many fully connected layers, which carry out the ultimate classification. Ultimately, the outputs are con-
solidated into an output layer, which yields the ultimate outcome indicating whether the image sample 
includes malware or not. The AdaBoost algorithm, a widely used ensemble learning technique, combines 
multiple weak classifiers (in this case, separate CNN models) to create a more powerful classifier. Ada-
Boost assigns a larger weight to samples that are wrongly categorized by the current set of weak classifiers 
during training, and a lower weight to data that are successfully classified. This allows the algorithm to 
focus on the most challenging samples, hence enhancing the overall accuracy of the algorithm. The pipe-
line we outlined appears to be a potent approach for picture classification since it amalgamates the bene-
fits of ensemble learning with the capabilities of VGG-16. The performance of the pipeline will be influ-
enced by the quality of the training data, the architecture of the CNN models, and the hyperparameters 
used for both the CNNs and the AdaBoost models.  

 
 

 
 

Figure 3. Pattern recognition 
 
The AdaBoost algorithm is commonly used in image classification applications to augment the per-

formance of a CNN-based pipeline, rather than replacing the (CNNs) Convolutional Neural Networks. 
(CNNs) Convolutional Neural Networks have demonstrated exceptional proficiency in image classifica-
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tion, especially when trained on large and diverse datasets. Pooling layers reduce the spatial dimensions 
of feature maps and create resistance to small translations in the input. On the other hand, convolutional 
layers acquire a set of filters designed to identify specific features in the input images. Typically, fully 
linked layers are used at the end of the CNN to do the final classification.  

Several efficient VGG-16 methods, like as VGG, ResNet, and Inception, employ convolutional neural 
networks (CNNs) for the purpose of image categorization. These models have shown exceptional per-
formance on various widely used image classification benchmarks, including as ImageNet, reaching the 
highest level of performance currently available. Ultimately, although the AdaBoost algorithm is a pow-
erful technique for ensemble learning, it is not commonly used as the primary picture classification algo-
rithm for VGG-16. Instead, CNN-based pipelines are commonly used and have achieved significant suc-
cess in computer vision tasks. 
 
4. Results 

This section showcases the outcomes achieved by the utilization of the DenseMal model, as well as 
five other baseline models, namely MobileNet, DenseNet, VGG16, VGG19, inceptionV3, and Efficient-
Net-B0. The models have produced comprehensive findings, which are reported in Table 5. In order to 
accurately assess the effectiveness of deep neural networks, we employed identical settings for each net-
work. 
4.1. Experimental Setup 

A total of eight models were successfully implemented using Keras. The models consisted of the six 
initial models, along with the DenseMal model, both with and without the utilization of the SMOTE 
Tomek approach as recommended. Python, a computer language, is also utilized in the creation of tech-
niques that are not directly linked to Convolutional Neural Networks (CNN). In order to conduct the 
experiment, a personal computer (PC) equipped with Windows 10 operating system, 32 gigabytes of 
RAM, and an NVIDIA graphics processing unit (GPU) with 8 gigabytes of memory was employed.  
4.2. Accuracy Comparison of Recent Deep Models with Proposed DenseMal 

By applying the SMOTE Tomek technique to the identical dataset, we conducted a comparison be-
tween our proposed DenseMal model and six distinct baseline networks. Prior to proceeding with the 
implementation of SMOTE Tomek, we conducted a comparison of the suggested DenseMal. The 
DenseMal model integrates up sampling, yielding remarkable implications for the model being presented. 
Table 5 shows that the suggested DenseMal model with up sampling, together with MobileNet, Dense-
Net, VGG16, VGG19, inceptionV3, and EfficientNet-B0 achieved accuracies of 96.79%, 92.92%, 87.73%, 
91.40%, 93.12%, 89.78%, and 95.80% respectively. Figure 4 demonstrates the notable enhancement 
achieved by employing the recommended MobileNet, DenseNet, VGG16, VGG19, InceptionV3, Effi-
cientNet-B0 models, together with the implementation of up sampling. 

 

 
Figure 4. Accuracy of DenseMal after applying SMOTE Tomek 

 
4.3. Comparison of DenseMal with Baseline Models in Terms of AUC  

As previously said in this study, our suggested model DenseMal utilizes a Convolutional Neural 
Network (CNN) with several units that are highly proficient in identifying different classes of COVID-19 
and Lung Cancer. In order to validate our proposed DenseMal, we conducted a comparison with six 
baseline networks. The baseline models, including MobileNet, DenseNet, VGG16, VGG19, inceptionV3, 
and EfficientNet-B0, achieved AUC values of 93.55%, 93.70%, 94.98%, 92.72%, 91.56%, and 93.23% re-
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spectively. Fig. 5 illustrates that the DenseMal algorithm, when combined with the SMOTE Tomek tech-
nique, achieved an AUC value of 97.93% using the provided datasets. After conducting a thorough anal-
ysis, we have concluded that the AUC results of the DenseMal model with SMOTE Tomek are better than 
the other six baseline CNN-based models, namely MobileNet, DenseNet, VGG16, VGG19, inceptionV3, 
and EfficientNet-B0. 

 
Figure 5. AUC of proposed DenseMal 

 
4.4. Comparison of DenseMal with Baselines Models in Terms of Loss 

The discrepancy between the real values and the anticipated values is calculated using loss functions. 
The loss was computed using a categorical cross-entropy technique in this study. The results, conversely, 
are more impressive when the network is built using up-sampled images. The proposed DenseMal model 
with up sampling achieved a loss value of 0.0427. In comparison, MobileNet, DenseNet, VGG16, VGG19, 
InceptionV3, and EfficientNet-B0 obtained loss values of 0.2616, 0.2033, 0.1647, 0.1886, 0.3117, and 0.1344, 
respectively. Figure 6 illustrates the considerable improvement in DenseMal loss when using SMOTE 
Tomek. 

 
Figure 6. Loss curve of proposed DenseMal 

4.5. Comparison of DenseMal with Baselines Models in Terms of Recall 
Recall is calculated by dividing the number of true positive predictions by the total number of actual 

positive instances. High recall levels reflect the identification of a larger number of positive samples. The 
recall curve is used to compare the recommended DenseMal with the baseline networks, as depicted on 
Figure 7. The recall values achieved by the suggested DenseMal model with up sampling were 89.92%. 
The recall values for MobileNet, DenseNet, VGG16, VGG19, inceptionV3, and EfficientNet-B0 were 
87.09%, 89.04%, 88.00%, 93.12%, 86.45%, and 94.44%, respectively. The recall performance of the proposed 
model has been noted to be exceptional. 
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Figure 7. Recall for proposed DenseMal 

4.6. Comparison of DenseMal with Baselines Models in Terms of Precision 
To determine the precision value, we conducted a comparison between the DenseMal model and six 

other models: MobileNet, DenseNet, VGG16, VGG19, InceptionV3, and EfficientNet-B0. The DenseMal 
model, which incorporates the SMOTE Tomek technique, achieved a precision rate of 89.91%. The Mo-
bileNet model attains a precision score of 88.83%. The Dense-Net yields a lower result of 89.63% in com-
parison to other baseline models. The VGG16, VGG19, inceptionV3, and EfficientNet-B0 achieved preci-
sion values of 82.71%, 84.80%, 84.38%, and 85.79%, respectively. Fig. 8 displays the comprehensive find-
ings. 

 
Figure 8. Precision of Proposed DenseMal 

4.7. Comparison of DenseMal with Baselines Models in Terms of F1-score 
The SMOTE Tomek model achieves an F1-score of 97.89%. The DenseMal model, when not utilizing 

the class imbalance method, achieved an F1-score of 79.99%. The F1-score values for six baseline models, 
namely MobileNet, DenseNet, VGG16, VGG19, inceptionV3, and EfficientNet-B0, were 88.29%, 91.41%, 
93.04%, 92.88%, 89.62%, and 93.85% respectively. Fig. 9 shows that the DenseMal with SMOTE Tomek 
approach earned the greatest F1 score. 

 

 
Figure 9. F-1 score for proposed DenseMal 
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4.8. Comparison of DenseMal with Baselines Models in Terms of ROC 
It is specifically implemented to examine the effectiveness of diagnostic testing, particularly in pre-

dicting outcomes using binary or multi-classification. The AU(ROC) is employed to assess the effective-
ness of a classifier; a higher AUC signifies a more efficient classifier. We assessed the precision of our 
proposed DenseMal algorithm on the curve, both with and without up sampling, by generating a dataset. 
Utilizing the identical dataset, this curve assesses the performance of the proposed DenseMal model with 
and without up sampling among six other models: MobileNet, DenseNet, VGG16, VGG19, inceptionV3, 
and EfficientNet-B0. The ROC values of the proposed DenseMal with up sampling were 0.9682, 0.9239, 
0.9241, 0.9171, 0.9163, 0.9201, and 0.9315, respectively. Figure 10 illustrates the notable enhancement of the 
proposed DenseMal algorithm when combined with the SMOTE Tomek technique, as demonstrated by 
the ROC curve. 

 

 
Figure 10. ROC Curve for proposed DenseMal 

 
4.9. Comparison of DenseMal with Baselines Models in Terms of Other Networks 

In order to assess the performance of the DenseMal model, we analyzed it with other networks using 
the confusion matrix. Figure 11 demonstrates that the technique applied to up sampled data results in 
significant improvement for DenseMal. 

 
Figure 11. Confusion Matrix for DenseMal Model 

5. Conclusions 
This work formulated and evaluated the DenseMal model for categorizing the 25 distinct varieties of 

Mal-ware samples, including Yuner.A, Allaaple.A, VB.AT, and Instantaccess. These malicious software 
programs are currently experiencing a rise in frequency and causing harm to devices on a global scale. 
The use of flawed, protracted, and insufficient testing methods, coupled with a failure to promptly iden-
tify malware, has directly resulted in the compromise of vital infrastructure and data. Given the signifi-
cant frequency of occurrences, it is imperative to establish a testing procedure that is both expeditious and 
effective. The DenseMal model has been provided to recognize the 25 different forms of malware pictures. 
Subsequently, these blocks are employed for the categorization of malwares at their initial stages. The 
upgraded structure is composed of multiple layers in each convolutional block, which are then utilized. In 
this inquiry, we utilize the SMOTE Tomek approach to generate samples. This approach enables us to 
address the issues related to the disparity in the dataset and the requirement to maintain an equitable 
distribution of samples across all classes. The DenseMal model achieved an AUC of 97.93%, precision of 
88.83%, recall of 89.92%, F1-score of 97.89%, and accuracy of 96.79%. Therefore, it can be inferred that 
DenseMal can serve as a significant and influential element for the security practitioner. A limitation of 
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our research is that the DenseMal model with SMOTE Tomek, which we have suggested, is not appro-
priate for analyzing malware data. For enhanced categorization outcomes of malware samples, we will 
incorporate Federated Learning alongside a CNN model in the future. 
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