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________________________________________________________________________________________________________ 
Abstract: Alzheimer's disease (AD) presents a substantial challenge to healthcare systems globally 
due to its progressive nature and the absence of effective treatments. The timely identification of 
AD is crucial for enabling interventions aimed at potentially slowing cognitive decline and 
enhancing patient outcomes. Recent advancements in medical imaging, notably PET and MRI, 
provide valuable insights into the subtle changes associated with AD pathology. This study 
investigates the utilization of the VGG16 deep learning model, recognized for its proficiency in 
image recognition tasks, to extract detailed features from MRI and PET scans. By leveraging the 
capabilities of deep learning, our objective is to reveal subtle patterns indicative of AD pathology. 
These extracted features are consolidated into a unified representation, which facilitates the training 
of machine learning classifiers. Employing various classifiers, such as Random Forest, Support 
Vector Machine, and K-Nearest Neighbors, we aim to exploit their strengths in managing complex 
data. The experimental outcomes demonstrate the effectiveness of this hybrid approach, with the 
Support Vector Machine emerging as the most successful classifier, achieving an accuracy of 84%. 
These findings underscore the potential of deep learning-assisted feature extraction and emphasize 
the significance of integrating advanced imaging techniques with sophisticated machine learning 
algorithms for improved AD detection and classification. Such initiatives hold promise for 
advancing our comprehension of AD pathology, enhancing diagnostic precision, and ultimately 
contributing to more effective management strategies for this debilitating neurological disorder. 

 
Keywords: Early detection of Alzheimer's disease (AD); diagnostic imaging in healthcare; 
Integrative methodology; Integratigration of Deep Learning with Machine Learning in Alzheimer's 
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________________________________________________________________________________________________________ 
1. Introduction  

PET imaging plays a crucial role in detecting changes in the brain associated with Alzheimer's disease 
(AD), particularly in metabolic processes and the accumulation of amyloid-beta (Aβ) plaques. The 
introduction of PET tracers like Pittsburgh compound B (PiB) has significantly aided in visualizing Aβ 
plaques, a key feature of AD pathology [1]. Moreover, the emergence of new PET tracers targeting tau 
protein accumulation provides deeper insights into neurofibrillary tangles, another critical aspect of AD 
pathology [2]. 

MRI offers a complementary perspective, utilizing its high spatial resolution to identify structural 
brain alterations indicative of AD. Research emphasizes the importance of structural MRI in detecting 
markers such as hippocampal volume and cortical thickness, serving as indicators of AD-related 
neurodegeneration [3]. Additionally, advanced MRI techniques such as diffusion tensor imaging (DTI) 
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offer insights into microstructural changes in white matter, enhancing our understanding of the underlying 
mechanisms of AD [4]. 

The integration of PET and MRI imaging holds significant promise in improving the accuracy of AD 
detection and classification. This multimodal approach provides a comprehensive view of AD pathology, 
combining evidence of amyloid and tau pathology with structural brain changes, facilitating the 
differentiation of AD from other neurodegenerative conditions [5]. 

Machine learning techniques have increasingly played a role in analyzing PET and MRI data, leading 
to more automated and objective diagnostic processes. For example, support vector machine (SVM) 
algorithms have successfully distinguished AD patients from healthy controls using PET imaging markers 
[6], while convolutional neural networks (CNNs) have automated the feature extraction and classification 
processes from MRI data, promising more efficient diagnostics [7]. 

However, challenges persist on the path to perfecting AD detection and classification through PET 
and MRI, including the necessity for standardized imaging protocols and biomarker quantification to 
ensure consistency across studies [8]. The pursuit of reliable imaging-based biomarkers capable of 
predicting clinical outcomes and monitoring disease progression remains crucial in combating Alzheimer's 
disease [9].This evolving landscape of AD diagnosis, fueled by technological advancements and 
interdisciplinary collaboration, is paving the way for more effective management and intervention 
strategies, potentially revolutionizing patient care and outcomes in the realm of neurodegenerative 
diseases. 

In this paper, a hybrid Deep Learning Approach for the early detection of Alzheimer’s disease (AD) 
is presented, combining multimodal imaging and Convolutional Neural Network (CNN) with Long Short-
term Memory (LSTM) algorithm [5]. The methodology integrates magnetic resonance imaging (MRI), 
positron emission tomography (PET), and neuropsychological test scores, achieving a remarkable accuracy 
of 98.5% in distinguishing cognitively normal controls from early mild cognitive impairment (EMCI) [10]. 
This highlights the potential of deep neural networks to automatically identify AD indicative biomarkers. 
Additionally, a deep CNN model for AD diagnosis utilizing brain MRI data analysis is proposed 
[11].Unlike binary classification approaches, this model can identify various stages of AD and 
demonstrates superior performance, outperforming comparative baselines on the Open Access Series of 
Imaging Studies dataset [12]. Furthermore, the paper discusses recent advancements in deep learning 
technology, particularly in the analysis of functional MRI (fMRI) for AD diagnosis, highlighting the 
potential of deep learning methods to aid in AD diagnoses [13]. Transfer learning techniques using pre-
trained weights from benchmark datasets coupled with image entropy selection are explored to enhance 
the efficiency of AD detection with smaller training sizes [14]. Moreover, the utilization of MRI coupled 
with K-Means Clustering and Watershed method for hippocampus segmentation shows promising results 
in AD detection, contributing to the growing body of research aiming to improve early diagnosis and 
treatment outcomes for AD patients [15]. The presented research explores various approaches to improve 
the diagnosis of Alzheimer's Disease (AD) through innovative methodologies integrating multimodal 
medical imaging data. Firstly, the CMPGAN model is introduced, aiming to address issues like mode 
collapse and gradient disappearance common in traditional generative models [16]. This model utilizes 
consistent manifold projection and a novel distribution distance metric to project data onto low-
dimensional manifolds effectively. Additionally, a feature extraction network is developed, incorporating 
radial medley units for multiscale feature extraction and harmonic voxel fusion matrix for voxel-level 
feature extraction. Experimental results demonstrate the effectiveness of this approach in FDG-PET 
generation and AD diagnosis, offering potential guidance for clinicians. 

Another aspect addressed in the paper is the challenge of non-intuitive data fusion in imaging 
genetics studies for AD. A multi-modal data fusion framework called MFASN is proposed, leveraging 
deep auto-encoder and self-representation techniques [17]. This framework constructs a multi-modality 
brain network from fMRI and sMRI data, utilizes deep auto-encoder for non-linear transformations and 
feature selection, incorporates sparse self-representation to capture multi-subspaces structure, and 
employs a multi-task structured sparse association model to mine correlations between genetic data and 
brain network features.  

The proposed method outperforms existing approaches, aiding in the discovery of discriminative 
biomarkers associated with AD. Furthermore, the study investigates classification models using 2D and 
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3D MRI images alongside amyloid PET scans, both individually and in multi-modal frameworks. Results 
indicate that models incorporating volumetric data and integrating multiple modalities exhibit superior 
performance, with state-of-the-art results achieved on the OASIS-3 cohort [18]. Additionally, explain-
ability analyses highlight the models' focus on crucial AD-related regions, enhancing understanding of the 
disease's mechanisms.  

The paper also presents a comprehensive comparison of statistical machine learning methods for AD 
diagnosis, exploring different data fusion strategies and dimensionality reduction techniques[19]. A novel 
supervised encoder method is introduced, demonstrating substantial improvement in prediction accuracy, 
particularly in combination with intermediate fusion for multiclass diagnosis prediction. 

Lastly, a novel Generative Adversarial Network incorporating a pyramidal attention mechanism is 
proposed to address the lack of PET image data in AD diagnosis datasets[20]. This approach generates PET 
images [21-24]. 
 
2. Materials and Methods 

This section thoroughly describes the tools, techniques, and protocols employed for data collection, 
processing, and analysis, ensuring transparency and reproducibility in the research findings. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed Methodology Block diagram 
2.1. MRI & PET Datasets  

The research utilized two distinct datasets containing MRI and PET images of the brain, sourced from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. These datasets consist of images 
categorized into five classes: Mild Cognitive Impairment (MCI), Cognitively Normal (CN), Early Mild 
Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer's Disease (AD). 
The MRI dataset includes 400 images for MCI, 300 for CN, 200 for EMCI, 240 for LMCI, and 180 for AD. 
Meanwhile, the PET dataset comprises 300 images for MCI, 250 for CN, 190 for EMCI, 292 for LMCI, and 
288 for AD. In total, there are 2640 images available for feature extraction across all classes. This diverse 
dataset facilitates comprehensive analysis and exploration of the pathological signatures associated with 
each class, supporting the development of robust diagnostic and classification models for Alzheimer's 
disease. 

 Table 1. PET & MRI Datasets 
 

 
 
 
 
 
 
 

Datasets MCI CN EMCI LMCI AD Total 

MRI 400 300 200 240 180 1320 

PET 300 250 190 292 288 1320 

MRI+PET 2640 
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2.2. Preprocessing  
 The described image preprocessing method adopts a systematic approach to enhance image 

quality for further analysis [25-27]. Initially, it standardizes image dimensions to 256x256 pixels to ensure 
consistency across datasets. Following this, Gaussian smoothing is applied using a 5x5 kernel to reduce 
noise while preserving important features. This helps in mitigating the impact of random variations in the 
image. The final enhancement step involves adaptive histogram equalization, specifically employing a 
contrast-limited adaptive Histogram Equalization (CLAHE) algorithm. This algorithm is fine-tuned for 
both clip limit and tile grid size to improve the contrast of the images. Enhancing contrast is critical for 
highlighting subtle features and enhancing the visibility of important structures within the images [28-30]. 
By implementing these techniques in sequence, the method effectively prepares images for detailed 
examination and analysis, particularly in fields requiring precise diagnostic or analytical insights from 
visual data. 
2.3. Segmentation 

The application of a Fully Convolutional Network (FCN) for segmenting PET and MRI datasets 
involves a mathematical model comprising convolutional layers followed by up sampling layers. The 
objective is to produce precise pixel-wise predictions. Let XPET represent the input PET image dataset and 
XMRI represent the input MRI image dataset. The structure of the FCN can be described as follows: 
𝑌𝑃𝐸𝑇 = 𝑓𝑃𝐸𝑇(𝑋𝑃𝐸𝑇)                                                                (1) 

 
𝑌𝑀𝑅𝐼 = 𝑓𝑀𝑅𝐼(𝑋𝑀𝑅𝐼)                                                                    (2) 

In this context, 𝐟𝐏𝐄𝐓 and 𝐟𝐌𝐑𝐈 represent the functionalities of the FCN models customized for PET 
and MRI datasets, respectively. These functionalities incorporate convolutional layers for feature extraction 
and upsampling layers to support pixel-wise forecasting. The resulting 𝐘𝐏𝐄𝐓  and 𝐘𝐌𝐑𝐈  outputs 
materialize as dense prediction maps, outlining segmented areas of interest within the PET and MRI 
images. 
2.4. Features Extraction & Fusion 

Feature extraction is a pivotal step in computer vision and medical imaging, focusing on discerning 
and isolating significant patterns or attributes within visual data. Its objective is to distill specific 
characteristics, such as pixel intensities or textures, to represent data in a more meaningful and manageable 
manner. This process aids in reducing data dimensionality while retaining pertinent information, thereby 
facilitating diverse analysis tasks like object recognition and classification [31-34]. The methodologies for 
feature extraction are manifold, tailored to the unique characteristics of image data and the requirements 
of specific applications. They assume a critical role in advancing the comprehension and analysis of visual 
data across various fields, notably in medical imaging, where they contribute to the identification and 
characterization of anomalies and diseases. Moreover, the integration of features from different sources or 
modalities, known as feature fusion, further enhances the representation of visual data, enabling a more 
comprehensive analysis and deeper insights. 
2.4.1. VGG-16 

To initiate the process, essential libraries are imported, including OpenCV for image processing and 
the Keras framework for deep learning functionalities. The load_images function is then utilized to 
navigate through the specified directory and load MRI and PET images, discerning between them based 
on filenames. Following this, the images undergo resizing to meet the input size requirements of the 
VGG16 model (224x224 pixels) and are converted into NumPy arrays for further processing. Subsequently, 
the script transforms the lists of features extracted from both MRI and PET images into NumPy arrays, 
facilitating efficient storage and manipulation. These arrays can then be used as inputs for subsequent 
analysis tasks, such as Alzheimer's disease classification or prediction. By employing deep learning models 
for feature extraction, researchers can harness the representational capabilities of convolutional neural 
networks (CNNs), enabling the automatic acquisition of discriminative features directly from raw image 
data. Additionally, adjusting parameters like batch size, step size, and the number of epochs can fine-tune 
the feature extraction process to enhance the model's performance. In our approach, we employed 30 
epochs with a step size of 20 and a learning rate of 0.01, aiming to optimize the training process and 
facilitate model convergence while balancing computational efficiency. 
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For PET images: 
Let	𝑷𝒂 shows the number of PET images. 
Let 𝑭𝒑 represent the feature array extracted from each PET image. 
The application of the VGG16 model to PET images can be symbolized as: 
 
𝑉𝐺𝐺16(	𝑃") = {𝐹𝑝1, 𝐹𝑝2, . . . , 𝐹𝑝𝑃}                                                    (3) 

For MRI images: 
Let 	𝑀!  denote the number of MRI images. 

Let 𝐹𝑚 represent the feature array extracted from each MRI image. 
The VGG16 model applied to MRI images can be represented as: 
 

𝑉𝐺𝐺16(	𝑀") = {𝐹𝑚1, 𝐹𝑚2, . . . , 𝐹𝑚𝑀}                                            (4) 
For feature fusion: 
Let concat describe the concatenation operation. 
The fusion of PET and MRI features using VGG16 can be expressed as: 

 
𝑉𝐺𝐺16𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑉𝐺𝐺16(	𝑃"), 𝑉𝐺𝐺16(	𝑀"))                                           (5) 

In this context, "VGG16fusion" denotes the amalgamated feature set comprising features extracted 
from PET and MRI images using the VGG16 model. 
2.5. Classification 
 In the classification section, we explore the utilization of machine learning algorithms for the 
differentiation of various classes or categories of data. Our emphasis lies in employing diverse classifiers 
to identify patterns and relationships within the extracted features, enabling precise classification between 
Alzheimer's disease cases and healthy controls. 
2.5.1. KNN 
 The K-Nearest Neighbors (KNN) algorithm is recognized for its simplicity and effectiveness in 
classification tasks. It assigns a sample to a particular category by examining the class labels of its k nearest 
neighbors. Unlike some other algorithms, KNN doesn't rely on a specific equation; instead, it calculates 
distances between data points to gauge their proximity. In the context of MRI and PET feature arrays, KNN 
computes the distance between the query point, which represents the combined MRI and PET features of 
a sample, and all other points in the feature space. The class label of the query point is then determined 
based on the majority class among its k nearest neighbors. 

The equation for the K-Nearest Neighbors (KNN) algorithm when applied to MRI and PET feature 
arrays involves computing the distance between the query sample and all other samples in the feature 
space. Let 𝑋#$% and 𝑋&'( represent the MRI and PET feature arrays, respectively, each containing N 
samples with 𝐷)*+ and 𝐷&'( features, respectively. The distance metric used, typically Euclidean 
distance, is calculated as: 
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥! , 𝑥") = .∑ 0𝑥#$%,!' − 𝑥#$%,"'2(
)*!"#

'+, ∑ 0𝑥-./,!0 − 𝑥-./,"02
)*$%&

1+,                (6) 

2.5.2. SVM 
Support Vector Machine (SVM) serves as a robust supervised learning method widely used for 

classification tasks. Its primary objective is to determine the optimal hyperplane capable of effectively 
separating data points into distinct classes based on their features. In the context of the linear kernel variant 
of SVM, it establishes a linear decision boundary to delineate classes. 
The SVM equation is denoted as: 
 

𝑦 = 𝑠𝑖𝑔𝑛(𝑊!"#$% ⋅ 𝑋('(),+,-) + 𝑏!"#$%)                                     (7) 
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Where sign(𝑊,-./0)  represents the weight vector, signO𝑋()*+,&'()P  denotes the feature vector, 
𝑏,-./0	is the bias term, and 𝑦 signifies the predicted class label. When applied to MRI and PET features, 
represented as numpy arrays, the equation remains consistent, with 𝑋()*+,&'() representing the 
concatenated feature vector comprising both MRI and PET features. 
2.5.3. Random Forest 

When utilizing Random Forest for classification with two NumPy arrays of MRI and PET features, 
the algorithm employs these features as input to a collection of decision trees. Unlike linear models, 
Random Forest does not adhere to a single equation. Instead, it amalgamates the predictions from 
numerous decision trees within the ensemble. Consequently, the equation for Random Forest involves 
amalgamating the decision rules from each tree to determine the final classification outcome. 
Mathematically, this aggregation process can be represented as follows: 

 
^𝑦 = 𝑚𝑜𝑑𝑒(𝑦1, 𝑦2, . . . , 𝑦𝑛)                                                     (8) 

Where In our study, e ^y denotes the predicted class, and y1, y2, . . . , yn represent the individual 
predictions from each decision tree in the Random Forest ensemble. The mode function selects the most 
frequently occurring class among these predictions to assign the final classification label. We utilized 100 
estimators for the Random Forest classifier, indicating the number of decision trees generated within the 
ensemble. By employing a larger number of estimators, our aim was to improve the predictive performance 
of the model by aggregating predictions from a diverse set of decision trees, thereby enhancing the overall 
robustness and accuracy of the classification results. 

 
3. Results 

In the results section, we outline the outcomes obtained from utilizing three separate classification 
algorithms: K-nearest neighbors (KNN), Support Vector Machine (SVM), and Random Forest. Each 
algorithm's performance is assessed concerning the classification of MRI and PET features for Alzheimer's 
disease detection. This section emphasizes the achieved accuracies of each algorithm, offering insights into 
their efficacy in discerning between various disease states. Furthermore, the results illuminate the relative 
strengths and limitations of these classification methodologies, providing valuable implications for future 
research and clinical implementations in Alzheimer's disease diagnosis. 
3.1. SVM 

Among the classification models studied, the Support Vector Machine (SVM) emerged as the top 
performer, achieving an accuracy of 84%. The corresponding loss value, which reflects the model's 
predictive error, was recorded at 0.380. Analysis of the confusion matrix, which visually depicts the model's 
predictions compared to the actual labels, offers valuable insights into its classification performance across 
different disease states. The high accuracy achieved by SVM underscores its effectiveness in identifying 
patterns within the MRI and PET feature space associated with Alzheimer's disease. This strong 
performance emphasizes SVM's potential as a dependable tool for early detection and classification tasks 
in Alzheimer's research and clinical practice, presenting promising avenues for further investigation and 
application in disease management strategies. 

 
Figure 2. SVM accuracy ,loss & confusion Matrix 
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3.2. KNN 
In our experimentation, we utilized the K-Nearest Neighbors (KNN) algorithm, achieving an accuracy 

rate of 80% and a corresponding loss value of 2.08. KNN operates based on proximity, assigning a data 
point the most common class label among its nearest neighbors. The parameter 'k', representing the number 
of neighbors, significantly affects the model's effectiveness. For our study, we selected k to be 3, meaning 
the algorithm considers the labels of the three closest neighbors when making predictions. The confusion 
matrix visually illustrates the model's predicted labels versus the true labels, providing insights into its 
classification performance across various disease states. 

 
Figure 3. KNN accuracy ,loss & confusion Matrix 

3.3. Random Forest 
The Random Forest (RF) algorithm achieved a classification accuracy of 73% in distinguishing 

between different disease states in Alzheimer's detection. Furthermore, the corresponding loss value was 
recorded at 0.88, indicating the variance between predicted and actual labels. The confusion matrix visually 
illustrates the predicted labels against the ground truth labels, providing insights into the algorithm's 
performance across various classes. With the utilization of 100 estimators in the Random Forest model, our 
goal was to utilize ensemble learning to bolster the robustness and predictive capability of the classification 
process [35-38]. These observations highlight the effectiveness of Random Forest in addressing intricate 
classification tasks and its potential applicability in Alzheimer's disease diagnosis and research efforts.

 
Figure 4. Random Forest accuracy ,loss & confusion Matrix 

 
4. Discussion 

In comparison with previous studies, our analysis identified significant variations in the performance 
of machine learning algorithms—specifically K-Nearest Neighbors (KNN), Support Vector Machine 
(SVM), and Random Forest (RF)—in the classification of Alzheimer's disease. KNN achieved a 
classification accuracy of 80%, surpassing both SVM and RF. SVM attained an accuracy of 84%, while RF 
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demonstrated a slightly lower accuracy rate of 73%. Despite SVM's superior accuracy, it incurred longer 
computation times due to its reliance on instance-based learning. Conversely, both KNN and RF offered 
quicker processing times, with RF particularly noteworthy for its ensemble learning approach and 
adeptness in handling complex classification tasks. Moreover, although KNN and RF encountered some 
misclassification errors, RF exhibited enhanced robustness in predictive capabilities. These findings shed 
light on the intricate balance between classification accuracy, computational efficiency, and model 
resilience inherent in various machine learning algorithms. Such insights are invaluable for advancing 
research in Alzheimer's disease detection and classification methodologies.  

 
Figure 5. Accuracies comparison 

 
5. Conclusions 

Our study delved into the performance evaluation of K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), and Random Forest (RF) algorithms in classifying Alzheimer's disease. The results 
revealed that KNN achieved the highest accuracy among the three, while SVM and RF demonstrated 
competitive performance with varying computational efficiencies. However, SVM, despite its accuracy, 
required longer computation times compared to KNN and RF. RF's utilization of ensemble learning 
contributed to its robustness, albeit with a marginally lower accuracy rate. 

These outcomes emphasize the significance of considering trade-offs between accuracy, 
computational efficiency, and model robustness when choosing classification algorithms. Future research 
endeavors aim to explore hybrid methodologies that harness the strengths of multiple algorithms to 
enhance the detection and classification of Alzheimer's disease. Additionally, integrating deep learning 
models for feature extraction with traditional machine learning classifiers holds potential to enhance 
classification accuracy and efficiency. Furthermore, expanding the dataset size and incorporating more 
diverse features could improve model generalization and performance across various patient cohorts. 
Overall, these research directions offer promising avenues for advancing the diagnosis and management 
of Alzheimer's disease. 
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