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Abstract: Accurate and reliable river flow predictions are obvious for appropriate planning, 
development and management of water resources, particularly for a country like Pakistan where 
cultivation is mostly by canal irrigation system. This is particularly important for sustainable socio-
economic growth, proper management of the canal system and flood mitigation under changing 
climatic conditions. In this study, thirty years’ (1985 – 2014) monthly temperature, precipitation and 
streamflow data from Astore sub-basin of the Upper Indus River Basin, UIRB in Pakistan have been 
analysed. The streamflow of the Astore River, which is a tributary of the Indus River, is predicted 
ahead of time, considering the impact of antecedent precipitation, the temperature and streamflow 
data. During the recent past decades, artificial intelligence-based modeling with several categories 
of models has been presented as an important technique for the prediction of hydrological 
phenomenon. In this paper, the performance of four Support Vector Machines Regression (SVR) 
models have been probed to predict the streamflow of Astore River. The Four SVR model types 
were compared on the basis of radial basis function, polynomial, linear and sigmoid kernels. 
Number of input combinations with input variables (temperature, precipitation, and streamflow) 
with reference to time lag were determined by Genetic Algorithm test. The best input combination 
for SVR models was identified using a genetic algorithm upon the bases of the smallest values of 
gamma and Standard Error. The Nash-Sutcliffe efficiency and Mean Bias error were used to evaluate 
the performance of SVR Models. The SVR model, based on radial basis function kernel forecasted 
the stream flows with higher accuracy as compared to the other kernels.    
 
Keywords: Water resource management; Genetic Algorithm; Short-term Streamflow Forecast; 
Support Vector Machine. 

1. Introduction 
Adequate planning and development of water resources possess crucial importance to a region as 

it affects many important areas i.e. hydropower, hydraulic structure design, irrigation system, river 
improvement, the agricultural yield, food security, economy and many other important areas of life. 
Streamflow simulation has an important role in sustainable water resources planning and management. 
The non-linear, high dimensional nature of such simulations makes their rendering a complicated process 
[1]. One way is to predict streamflow using numerous modeling techniques such as black box models, 
stochastic models, distributed physical models and lumped conceptual models [2]. 
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For a country like Pakistan where the rainfall is uneven, region to region and timely therefore the 
availability of water for crops in times of water scarcity is of extreme importance for its agriculture needs 
and hence demands for crop water normally increases at times when the rainfall recedes or when there is 
no rainfall. This needs to focus more for a better management of the water resources of the country to boost 
the country’s economy and ensure the food security. Also, a cheaper electricity production is a vital need 
of the country which is only possible to shift all the thermos power generation to hydropower production. 
All these issues can be dealt with to a large extent through precise water resources management which in 
turn depends upon correct prediction of stream flows [3]. Runoff prediction is a complex process to be 
predicted due to its non-linear, multi-dimensional dynamics [4]. A new dimension has been introduced in 
hydro meteorological prediction using artificial intelligence based data driven modeling techniques for the 
identification of input models [5]. This new dimension is useful in other predictions such as solar radiation 
estimation [6] and [7], wind speed modeling [8] and land use classification [9]. Data driven modeling is an 
effective tool for the prediction of daily streamflow. Over the years, several data driven techniques have 
been used to predict the streamflow, which includes Support Vector Machines (SVM), Artificial Neural 
Networks (ANN), K-Nearest Neighbors (KNN), Genetic Programming (GP), Crisp Distributed Artificial 
Neural Networks (CDANN), Model Trees (MT) are effective tools for the prediction of streamflow. 
Previously a lot of work has been done by various researchers using the above techniques e.g. [10], 
predicted floods using the SVM, similarly [11], applied SVM to predict the rainfall and runoff, and [12] 
applied Support Vector Regression (SVR) to predict floods in real time. Additionally, [13] applied the SVM 
model to foresee a-day ahead streamflow and then compared the results with hybrid techniques of ANN 
(ANN integrated with genetic algorithms ANN-GA) and results showed that SVM based prediction 
models outperform the rest with relatively high degree of accuracy. [14] used modified SVM for prediction 
of streamflow of the Shihmen Reservoir, Taiwan. [15] used SVM to predict streamflow for ungauged sites. 
[16] used SVM to forecast the river flows. [17] used SVM to predict water levels in lakes. [18] used hydro 
meteorological data sets to predict the inflow in Tarbela reservoir using ANN and regression techniques. 

The ANN and SVR models have shown accurate results when solving high dimensional non-linear 
problems such as streamflow simulation. As such, recently, the ANN and SVR models have been widely 
and successfully used to perform hydrologic and streamflow forecasting [19], [20] and [21]. [22] and [23] 
presented streamflow simulation for high altitude catchments in Pakistan. In another study [24], [25], 
floods were predicted using SVR models. The SVR models are classified into various types comprising the 
techniques for the selection of inputs, different parametric optimizations and training processes. Finding 
the optimal SVR model type for a particular problem is a hard exercise. This study facilitates scientists, 
engineers and researches to select an accurate model to predict streamflow, comparing the performance of 
a few such techniques. 

Data sensitive machine learning models can be applied to particular sites and are also generally 
standardized for a particular set of data. Therefore, there is a lot of research gap and the models need to 
investigate further, while working with different record lengths. Similarly the performance of models with 
a variety of data sets in terms of complexity and sizes need to be investigated. The work will surely be 
useful to researchers and engineers in this area of research as such methods have been sparsely applied for 
the predictions of stream flow in the past, especially in the selected study area of the Indus Basin. For 
stream flow predictions for various time lags (t in months), the monthly observed data for precipitation 
((P(t), P(t-1), P(t-2), P(t-3), P(t-4), P(t-5)), temperature (T(t), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5)) and discharge 
(Q(t), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5)), used being the inputs whereas the output variable was the 
streamflow (Q(t+1)). The most essential modeling objective was to find the ideal combination of inputs. 
(Bray and Han 2004) urged that the vast amount of inputs makes the process of developing the model, a 
complex activity and therefore, a more robust method is needed to find the best possible input combination. 
 Here, the genetic algorithm (GA) is utilized for choosing the best possible combination of inputs for the 
Support Vector Regression models. 

Although regarding the time lag, a certain correlation always exists between the input and output, a 
number of varying input combinations can also be there including the prime input variables (precipitation, 
temperature, evaporation, streamflow, river stage etc.). Previous studies indicates that three of these 
variables i.e. temperature T, precipitation P and streamflow Q with respect to time, t had been rarely used 
simultaneously for the development of input combinations. Mostly the precipitation and streamflow have 
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been used together and, in some studies streamflow, has been used as a sole input parameter. [26], [27], 
[28], [23], [19] and [20]. As an example, [26] used runoff depth and rainfall as input variables. [27] used 
precipitation, temperature and streamflow as input variables. [19], [23] and [28] used precipitation and 
streamflow as input variables whereas water level and precipitation were used as input variables by [29]. 
[30], [31], [32], [20] and [33] used a unary variable streamflow as input. 

Here in this work, the streamflow simulation results are compared, computed using three main input 
variables, precipitation, temperature and streamflow, simultaneously in a single input combination. 
Monthly data of the past three decades (1985 to 2014) have been used for this study. 

 
2. Materials and Methods 
2.1 Study Area 

One of the world’s biggest basins lying in Pakistan is the Indus River Basin (IRB) surrounding about 
970,000km2 of area. The Upper Indus River Basin (UIRB) is a sub-catchment of Indus River Basin (IRB) and 
it spreads from the origin of Indus River towards the first water reservoir at Tarbela with a total coverage 
area of approximately 175,000 km2 [34]. The River Indus is the biggest river in Pakistan and annually 
provides 75% of water to irrigation canals and 80% to the hydro-power generation projects [34]. Three 
largest mountain ranges, the Karakorum, the Himalaya and the Hindukush also exist in the UIRB. The 
three mountain ranges meet at the juncture located about 40 kilometers from the Gilgit city. Among all the 
world’s glaciers, UIRB glaciers comes at the second spot after polar region as the largest glaciers. Glacier 
melt and precipitation over UIRB are the major waterflow sources of the Indus River and its tributaries. 
The major tributaries of UIRB includes Gilgit, Skardu, Astore, Gupiz and Drosh rivers. All the plain areas 
of the Lower Indus region throughout towards the Arabian Sea depends upon the flows of River Indus for 
their groundwater resources. 

In order to study the Upper Indus Basin Cryosphere, Water and Power Development Authority 
(WAPDA) of Pakistan has undertaken various initiatives. During 1960s, WAPDA established Hydro-
meteorological networks to monitor the Cryosphere through its Surface Water Hydrology Project, [refer 
Figure 1]. In this study, precipitation (P), streamflow (Q) and temperature (T) data for 30 years (1985 to 
2014) was considered. The data was collected from Astore climate and streamflow gauging station (as 
illustrated in Figure 1) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Figure 1. The figure illustrates the study area of this work, mentioning climatic and river gauging stations of 
the Astore sub basin of the Upper Indus Basin, Pakistan. 

2.2 Genetic Algorithm (GA) 
A biologically inspired algorithm known as Genetic Algorithm, conforms to genetic norms by 

generating numerous input combinations. The best input combination, with least complex SVR models 
and least output error rate, is selected. GA is basically an optimization algorithm where it tries to find 
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improved solutions by performing a global search. It has a fixed sized population of individuals (inputs 
and weights), known as generation. Through an iterative process, in each iteration, the algorithm selects 
new individuals or improves the individuals to form a new generation, eventually reaching to improved 
solutions. Following this methodology, the GA has the ability to choose the appropriate feature subsets 
and the learning rate. Further details regarding this method can be found at [35], [36]. In order to run the 
GA algorithm, the Win Gamma software was used [37]. 
2.2.1 Model Input Selection Using Genetic Algorithm Test (GA) 

The most and the least influential parameters on the model predictions have been identified in this 
work. As mentioned before, the most important steps for data driven machine learning model development 
is the selection of the right set of input variables. A right selection of input variables leads to a model with 
increased efficiency whereas a poor selection of input variables can cause overfitting. An overfitted model 
overreacts to small variations in the training data and as such depicts inferior predictive performance. 

According to the theory of Genetic Algorithms, the input combination with the least values of 
Standard Error (SE) and Gamma is considered to be the best combination. A low value of SE and gamma 
show that the model is more likely to have better results determined from the developed models using the 
data with the given input combination. Generally, input combinations with low SE and gamma are quite 
rare, hence special care is required when selection of the best input combinations is performed. For 
modeling purposes, the monthly data points for discharge, temperature and precipitation were used for 
the year 1985 to 2014 for the sub-basin Astore. The units of almost all the input variables were different, 
hence the data was made smooth and uniformed by normalizing it between 0 and 1 using Microsoft Excel. 
Once normalization was complete, the data was saved as a CSV (Comma Separated variable) file, so it can 
be imported to win-Gamma application [37]. In the win-Gamma application, the Genetic Algorithm test 
was performed to obtain the superior input combinations. The following variables can be modified using 
GA, however, default values provided by the software were applied in this study.  

• Population size: Number of masks used in the current generation (default value =100) 
• Mutation Rate: Probability of single bit mutation in each generation. (default values = 0.05) 
• Crossover Rate: Probability of crossover in each generation (default values = 0.5) 
• Gradient Fitness: The fitness function weight utilized for the masks in the Gamma Test having a lower 

gradient. (default value = 0.1). By increasing this weight further simplicity can also be achieved. 
• Intercept Fitness: The fitness function weight utilized for the masks having a low Gamma statistic 

absolute value. (default value = 1.0). More Accuracy is obtained by increasing this weight. 
• Length Fitness: The fitness function weight utilized for masks having a specific number of ‘1’s. (default 

value = 0.1). Masks having small numbers of ‘1’s have a higher selection probability and by increasing 
this weight simpler models can be obtained.     

• Run Time: For a particular chosen GA, a longer run time enables a bigger population which eventually 
leads to a better fitness of the most suitable mask. (default value = 5 min). Several hours of run time is 
required for GA with longer masks (having large numbers of inputs) and bigger data sets. 

Using the Genetic Algorithmic simulations, 100 possible input combinations were found and then the 10 
best input combinations were chosen based on the smallest Standard Error (SE) and Gamma (Ʈ) values. 
Eventually, among these ten input combinations the one having the smallest Gamma value was chosen for 
the analysis as the best input combination. (Figure 2(b)). 

Gamma value (Ʈ): The Gamma Ʈ is an estimate of that part of the output variance that cannot be 
attributed for by the presence of a smooth data model.  Infact, the Gamma is the y-intercept of the 
regression line. [38] 
2.3 Support Vector Machines 

Support Vector Machines (SVM) (Bray and Han, 2004) is comparatively a new tool in artificial intelligence 
based on supervised learning that analyzes data and recognizes patterns. It can be applied successfully to 
classification tasks such as Pattern Recognition (PR) and Optical Character Recognition (OCR) but the most 
recent success was when applied to regression and time series analysis (Xie, 2009). SVM is a two layered 
network i.e., in first layer the weights are non-linear while for the second layer, the weights are linear. [39]. 
Figure 2 (a, b) shows the flow chart and a general structure of SVR model.  

In statistical learning process, the basic mathematical function is represented by equation “(1)”. 
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For the case of SVM, nonlinear conversion in usually carried out by φ(x) and linearly weighted sum of 
M is the output. decision function is given as 

       
In “(2)” N represents the number of training data points, xi are vectors used in training process while x 

is an independent vector. Where αi and b are parameters that have been derived by maximizing the 
objective function. An important variable in “(2)” is the kernel function K, which simplifies the learning 
process to a higher dimensional feature space from the input space. Four standard types of kernels namely 
linear, polynomial, sigmoid and radial basis are commonly applied, and these are given as 

Linear:    

Polynomial:    
Sigmoid:  tanh  

Radial basis:   

2.3.1 Support Vector Machine (SVM) Modelling 
The Epsilon-SVR model for predicting the stream flow was used for models development. The Epsilon-

SVR model kernels i.e., Linear, Polynomial, Sigmoid and Radial Basis Function (RBF) were considered for 
the analysis. A number of SVM implementations are available, LIBSVM [40] was used in this study, 
supported by the National Science Council of Taiwan. SVM modelling was performed using MATLAB 
version R2013a. For predicting stream flows (Qt+1), the “tolerance of termination criterion (e)” and “the 
parameter C (c)” were set to 0.1 and 2 respectively for the Linear, Polynomial, Sigmoid and RBF kernels 
modelling. The coding for both the training and testing stages was done in MATLAB, for the best selected 
input combination. 

 

 
Figure 2. (a) Schematic diagram of support vector regression structure illustrating input and output 

parameters. 
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Figure 2. (b)The methodology framework of the GA-SVR modeling for selecting the best input 

combination and output prediction based on performance indices. 

2.4. Evaluating Model Performance 
Table 1. Provides a summary for the adopted model’s performances found using statistical 

parameters. 
Indices 

 Value Classification 
of performance Reference 

Nash–Sutcliffe model efficiency 
coefficient (NSE) 
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Good 
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Unsatisfactory 

Boskidis, et 
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Moriasi, et al., 

(2007) 

Mean Bias Error (MBE). 
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In the given equations, ,  and Qavg Represents the predicted, observed and the average 
observed stream flows respectively whereas the total number of input samples are represented by n.   

 
3. Results and Discussion 
3.1 Combinations of Inputs using Genetic Algorithms 

For such an input type where all the three parameters are taken, the GA identified a number of 
different input combinations which are presented in table 2 whereas SE and Ʈ variations are presented in 
Figure 3. It was found that the 111100011100111000 (the ten input values as Pt, Pt-1, Pt-2, Pt-3, Tt-1, Tt-2, 
Tt-3, Qt, Qt-1, Qt-2 ) for a single output (Qt+1) was the best choice of the available input variables. The 
selection of this combination was based on the least Gamma and SE values for analysis.  For the selected 
combination, the precipitation during time delay of the running month (t) and temperature with three 
previous months (t-1, t-2, t-3) have shown an effect on streamflow Qt+1, however in case of streamflow, 
only two previous values and and one running month value i.e.  (Qt , Qt-1, Qt-2) have shown their influence 
on Qt+1. It had been suggested in a study that for high stream flows, variation in precipitation is the key 
parameter. In the weather and basins having significant snowmelt, temperature is the prime factor for the 
predictions of streamflow. [41] The flows in UIRB stream comes mostly from glacier melts, groundwater 
and from rain flows. Therefore, best input combination which is developed by the GA test is logical. 

Table 2. Ten selected input combinations on basis of lowest Gamma (Ʈ) and Standard Error (SE) 
values developed by GA simulations. 

Input combinations Mask  ( Ʈ) SE 

*P(t) , P(t-1), P(t-2), P(t-3), T(t-1), T(t-2), T(t-3), Q(t), Q(t-1), Q(t-2) 111100011100111000 0.001231 0.00145 
P(t) , P(t-1), P(t-2), P(t-3),T(t), T(t-1), T(t-2), T(t-3), T(t-4), Q(t), Q(t-1), Q(t-2), Q(t-3) 111100111110111100 0.001313 0.00122 
P(t), P(t-2), P(t-4), P(t-5), T(t), T(t-1), T(t-2), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011111001011100 0.001338 0.00134 
P(t), P(t-2), P(t-4), P(t-5), T(t), T(t-1), T(t-2), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011111000111100 0.001432 0.00153 
P(t), P(t-2), P(t-4), P(t-5), T(t-1), T(t-2), T(t-3), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011011101111100 0.001446 0.00118 
P(t), P(t-2), P(t-4), P(t-5), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011011111111100 0.001489 0.00085 
P(t), P(t-2), P(t-4), P(t-5), T(t), T(t-2), T(t-3), T(t-4), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011101111111100 0.001495 0.00058 
P(t), P(t-2), P(t-4), P(t-5), T(t), T(t-1), T(t-2), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011111001111100 0.001497 0.00071 
P(t), P(t-2), P(t-4), P(t-5), T(t-1), T(t-2), T(t-3), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011011101111100 0.001498 0.00069 
P(t), P(t-2), P(t-4), P(t-5), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5), Q(t), Q(t-1), Q(t-2), Q(t-3) 101011011111111100 0.001510 0.00132 

* The best combination is in bold.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Gamma and Standard Errors found in the data in response to the combinations of inputs 
developed by performing the Genetic Algorithm test. 

3.2 Results of SVR Models 
The Figures 4 – 6 represents the comparison of the results, obtained by the analysis of the four selected 

SVR kernel models for which the input combinations were selected by Genetic Algorithm tests. Table 3 
shows the various indicators (i.e., NSE, and MBE) applied in the analysis to measure the performance 
ratings of the various SVR Kernel Models. SVR with RBF kernel having maximum value of NSE (minimum 
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error) and minimum MBE showed best results when for a single output a combination of ten inputs were 
applied. SVR -RBF Kernel have good performance during the training and testing phases. Results 
suggested that the SVR-Linear kernel proved better performance as compared to Polynomial and Sigmoid 
kernels. The SVR-Polynomial kernel model stood inferior of all the four models. The SVR-RBF kernel model 
also had the best correlation coefficient (R2) shown in figure 6. The result obtained by the Epsilon-SVR 
models for validation phase are presented graphically (hydrographs) for the predicted stream-flows (Qt+1) 
and observed stream-flows (Q) in figure 5. 

Table 3. Comparisons of results among four SVR models 

SVM Models 
Calibration Validation 

NSE MBE NSE MBE 
Linear  Kernel 0.89 -9.54 0.88 -10.68 

Polynomial  Kernel 0.76 -28.57 0.72 -34.38 
RBF Kernel 0.93 -4.23 0.90 -5.83 
Sigmoid Kernel 0.86 10.68 0.85 -12.76 

              *Best result is bolded 
 

 
Figure 4.. Comparison of performance indices i.e. Mean Bias Error (MBE) and Nash–Sutcliffe model 

efficiency coefficient (NSE) for the SVR Kernel models both for i) Calibration and  ii) Validation phases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Observed stream flow comparison with the stream flow predicted by Support Vector 
Regression models using Genetic Algorithm Test for a validating phase of 10 years from 2005 to 2014. 
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Figure 6. Scatter plot for Observed discharge values to the predicted discharge values using the best 
Epsilon-SVR models demonstrating the values of R2 (coefficient of determination) elaborating the 

effective results of the model developed for validation phase 
 

4. Conclusion 
 In this work, four different SVR kernels (i)Linear, (ii)Radial Base Forecast, (iii)Polynomial and 

(iv)Sigmoid were utilized. The RBF kernel outperformed the other three kernels during each phase i.e., 
training and testing phase. The outperforming results of statistical parameters show that SVM has a good 
predictive ability in the field of hydrology which can be utilized in watershed and river management. 
Antecedent rainfall and antecedent discharges can be used as input for the prediction of streamflow. Also, 
the results indicate that it is not necessary that a greater number of data input combinations will yield good 
results as it has been seen that the best results have been produced by the above stated combination 
consisting only ten inputs as compared to the total selected seventeen inputs. 
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