
Journal of Computing & Biomedical Informatics Volume 06 Issue 02
 ISSN: 2710 - 1606 2024

ID : 376-0602/2024

Research Article
https://doi.org/10.56979/602/2024

Securing Cloud Environments: A Convolutional Neural Network (CNN)
approach to Intrusion Detection System

Syed Younus Ali1,2, Umer Farooq2, Leena Anum3, Natash Ali Mian4, Muhammad Asim5,6, and

Tahir Alyas2*

1Department of Computer Science, Minhaj University, Lahore, 54000, Pakistan.

2Department of Computer Science, Lahore Garrison University, Lahore, 54000, Pakistan.
3Department of Management Sciences, Lahore Garrison University, Lahore, 54000, Pakistan.

4SCIT, Beaconhouse National University (BNU),Lahore, 54000, Pakistan.
5Department of Computer Science, National College of Business Administration & Economics

Sub Campus Multan, 60000, Pakistan.
6Khawaja Fareed University of Engineering and Information Tehcnology, Rahim Yar Khan, 64200, Pakitan.

*Corresponding Author: Tahir Alyas. Email: tahiralyas@lgu.edu.pk

Received: January 19, 2024 Accepted: February 19, 2024 Published: March 01, 2024
__

Abstract: Cloud-computing has become an essential portion of recent IT structure, contribution scal-
able resources and on-demand services to users. However, the increasing reliance on cloud environ-
ments has raised concerns about security, especially with the rise of sophisticated cyber threats.
Intrusion detection systems (IDS) play a crucial role in detecting and mitigating possible security
breaches. In this studies proposes a approach to enhance intrusion detection in cloud computing
through the CNN. This deep learning architecture adapted for the unique challenges in cloud com-
puting security. Unlike traditional IDS methods that rely on rule-based or signature-based ap-
proaches, the CNN-based intrusion detection system presented in this research leverages the net-
work's capability to automatically learn hierarchical features from raw data. This study is involves
the collection of diverse and representative datasets from cloud environments, including normal
network traffic and various types of attacks. The CNN is trained on these datasets to learn the in-
herent patterns of legitimate activities and deviations indicative of potential intrusions. The pro-
posed system demonstrates its adaptability to evolving threats by continuously updating its
knowledge through regular retraining with new data. The evaluation of the CNN-based intrusion
detection system is conducted through comprehensive experiments, comparing its performance
against traditional methods. The results indicate that the CNN-based approach outperforms con-
ventional IDS techniques, demonstrating its potential as a robust and efficient solution for intrusion
detection in cloud computing environments.

Keywords: CNN; Intrusion detection system; Intrusion; Machine learning; Cloud Computing.

1. Introduction
 Cloud computing is inexpensive and offers a pay per use model, it is an emerging technology that is
being attracts all stack holders. Cloud computing has revolutionized the way businesses and organizations
manage their IT infrastructure and services. However, with the increased reliance on cloud environments,
the need for secure environments, like instruction-free environments, has become paramount. IDS plays a
crucial role in monitoring and analyzing network traffic, detecting potential threats, and promptly re-
sponding to security incidents within cloud infrastructures. By leveraging cloud-based IDS solutions, var-
ious types of cyber threats, including unauthorized access attempts, malware infections, and malicious
activities. Cloud-based IDS systems offer scalability, flexibility, and real-time monitoring capabilities, mak-
ing them well-suited for dynamic and distributed cloud environments. Furthermore, integrating Intrusion
Detection Systems with advanced technologies like machine learning and artificial intelligence, such as

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Convolutional Neural Networks (CNNs), can significantly improve threat detection accuracy and reduce
false positives. CNNs excel in analyzing complex patterns and anomalies in network traffic, enabling more
effective threat detection and response in cloud computing environments. [1].
 One of the primary tools in the toolbox of security requirements for protecting computer systems and
networks from malicious activity is the intrusion detection system (IDS). It is a piece of hardware or soft-
ware that keeps an eye on host or system activity and network traffic to spot any malicious or policy-
violating behavior within the system. They also report the system administrator with warning sirens and
other information if such behaviour is found. But these warning notifications from an intrusion detection
system (IDS) can be a false alarm and unrelated to the real intrusion that's affecting the system's function-
ality. System administrators resolve attacks by altering the affected system's content, configuration, or se-
curity environment [2].
 The idea of computer security threat monitoring gave rise to intrusion detection systems. IDS is a
defensive and proactive computer monitoring and defense solution that guards vital IT infrastructure from
unauthorized activity. The IDS can be divided into the following three types: signature-based intrusion
detection systems (IDSs), which match network traffic to a database of recognized signatures in order to
identify patterns of malicious attempts; anomaly-based intrusion detection systems, which identify anom-
alous network patterns that cannot be connected to recognized signatures; for example, they raise an alert
when excessive power is utilized suspiciously; Using its log file and application, behavior-based intrusion
detection system (IDS) can identify abnormal activity. [3].
 By closely examining each packet at the network and transport layers, the network intrusion detection
system (NIDS) keeps an eye on and evaluates network traffic. It actively searches for any potentially trou-
bling activity or network-based assaults, including port scans and Denial of Service (DoS) operations.
When anomalous activity is detected in the network traffic, notifications may be sent to the system admin-
istrator immediately. Commonly used commercial intrusion detection systems (IDSs), such Snort,
Tcpdump, and Natural Flight Recorder, are well known for their efficiency in medium-sized networks and
their simplicity of use. They responded by putting out a creative strategy to deal with these difficulties.
This method, which examines network data passing via virtual computers, has shown to significantly im-
prove attack detection while successfully lessening the effects of assaults.
 IDS keeps an eye on specific hosts or devices connected to a network by analysing events that happen
on them and looking for changes in their activity. It examines all facets of a host's activity, including system
calls, file-system updates, incoming and outgoing packets, and application logs. The system sends a warn-
ing to the administrator informing them to take precautions against possible harmful attacks if any unusual
behaviour is found. HIDS is preferred over Network-based Intrusion Detection Systems (NIDS) in many
industries. A particular HIDS model that detects intrusions by matching predetermined patterns with the
system logs was created based on the study of Microsoft Windows XP log files [5]. Hybrid Intrusion De-
tection System (HIDS), alternatively referred to as Distributed IDS (DIDS), incorporates multiple detection
methods or systems, such as Network-based IDS (NIDS) and Host-based IDS (HIDS). This system is spe-
cifically designed for deployment across extensive distributed networks like cloud computing, facilitating
seamless communication among all entities. The interconnected hosts within the network gather system
information and transform it into a standardized format before transmitting it to a central server or net-
work monitor, as elucidated. This configuration ensures efficient data exchange and centralized monitor-
ing across the network. [6].
 The hypervisor that builds and manages virtual machines, which are abstractions that are accessible
over a cloud network. It is also crucial to the operation management of every virtual machine instance.
Virtual machines are primary targets for potential intruders, necessitating their protection. Therefore, hy-
pervisor-based IDSs are established over the virtual network to secure both the virtual machines and the
hypervisor. They offer a level of abstraction between the VM and host. Key components of IDS are posi-
tioned hypervisor to detect anomalous user activities through metadata analysis on the network. These
components monitor and analyze communication between VMs and hypervisors[7].

2. Literature review
 This section summarizes the information analyzed and discussed about cloud-based IDS. The com-
parison is structured thematically, based on the approaches used for IDS.. Different approaches have been

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

utilized, reflecting the diverse research in this area. Soft computing, or computational intelligence, is ap-
plied for solving challenging problems, including NP-complete problems. Intrusion detection is an NP-
complete problem, challenging for humans with bounded rationality to make feasible. This study examines
three main categories of soft computing: fuzzy logic, artificial neural networks, and machine learning. Ta-
bles 1 and 2 present a comprehensive study of the cloud-based IDS proposed along these three attributes.

Table 1. Summary of IDS and alogorithm
References Algorithm Preferred Description

Kozik et al., 2018 Extreme Learning Ma-
chine

The anomalies, such as DoS, have been detected by
integrating traffic classification into edge devices
with the machine learning solution.

Idhammad et al.,
2018 [13]

Random Forest and
Naive Bayes Classifiers

It offers a suggested methodology that makes use of
machine learning classifiers to identify anomaly-
based intrusions in five modules. It has compared its
findings with those of other approaches using the
CIDDS-001 dataset.

Gill, & Buyya,
2018 [14] SVM

The secure resource management component of the
cloud was the primary emphasis of this paper. It has
suggested a self-defense strategy against assaults.

Aljawarneh et al.,
2018 [15]

ML based hybrid classi-
fiers

The complexity of computation and time has been
greatly decreased.

Alzahrani, &
Hong, 2018 [16]

Back Propagation Neural
Networks

A hybrid model has been proposed to detect intru-
sions based on anomalies as well as signatures. It has
detected DDoS attacks by utilizing the idea of an ar-
tificial neural network technique.

Modi et al., 2016
[17]

NN
for anomaly-based detec-

tion

This study uses a hybrid network intrusion detection
system via cloud to identify threats, such DDoS and
DoS, etc. It has produced results in a remarkably
short amount of detection time and increased overall
detection rate.

Alfy, & Al-Obei-
dat, 2014 [18]

Fuzzy Classification
method

On the basis of irregularities in the flow, this paper has
identified intrusions. It used a greedy selection strategy
to handle a variety of qualities before detecting attacks.

Ziong et al., 2018
[19] SSN approach

This research has examined cloud network traffic ac-
cording to its dynamic properties. It has, however, not
identified any particular kind of attack and has instead
regarded all attacks as anomalies.

Table 2. Summary of Attacks detected, Dataset used and Algorithm Preferred

Year Attacks Dataset Algorithm Ref. No

2021
generic, Brute-force,
Analysis, backdoor,
sql injection, DDoS

CICIDS 2017 dataset,
CICIDS 2019 UNSW-

NB15 dataset,

Classifier for Decision Jun-
gles

[21]

2020
U2R, DoS, probe,

R2L,
Dataset NSL-KDD ANN hybridizes with FCM. [22]

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

2020
DoS, U2R, R2L,

probe
Dataset NSL-KDD

SVM and FCM are hybrid-
ized.

[23]

2019 Different Attacks

36 datasets of actual
assaults gathered

from the network traf-
fic blog between 2014

and 2016
simplistic Bayes clas-

sifier

naïve Bayes classifier [24]

2019 DoS Dataset generated

The rule-based algorithm,
scoring system, and ranking

algorithm are used to classify
assaults.

[25]

2019
U2R, R2L, DoS,

probe
dataset NSL-KDD

PSO has been modified so
that the particles' updated lo-

cation is produced by ap-
pending the previous loca-

tion to the new location. This
lengthens the period of inves-
tigation. PSO is used with CS.

[26]

2019 Various attacks generated Dataset

The authors employ Virtual-
Box, and Ubuntu 15 is used
to generate datasets in con-
junction with the Apache

web server.

[27]

2019
U2R, DoS, probe,

R2L
dataset NSl-KDD Logistic regression [28]

2019
backdoor, Analysis,

generic, sql injection,
DDoS, Brute-force

dataset CICIDS 2017 Bat algorithm [29]

2019
U2R, DoS, probe,

R2L, , sql injection,
web attack.

CICIDS 2017 dataset GA [30]

2018 DDoS CICIDS dataset
Time-sliding window algo-

rithm
[31]

 CNNs, a class of deep learning algorithms, have shown exceptional performance in areas requiring
pattern recognition and feature extraction, such as image and speech recognition. The intricate patterns of
network traffic and user behavior that characterize cyber intrusions. Unlike traditional IDS, which rely on
predefined rules and signatures, CNN-based systems can learn and evolve, improving their detection ca-
pabilities over time [24].
 The application of Convolutional Neural Networks in intrusion detection systems offers promising
prospects for enhancing cloud security. By leveraging the advanced pattern recognition and feature extrac-
tion capabilities of CNNs, it is possible to develop more effective and adaptive security mechanisms for
cloud environments. However, addressing the challenges related to data diversity, model scalability, and
computational efficiency is crucial for realizing the full potential of CNN-based IDS in securing cloud

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

infrastructures[25].

3. Materials and Methods

The methodology for securing cloud environments using a Convolutional Neural Network (CNN)
approach to Intrusion Detection System (IDS) involves several key steps. Firstly, data collection is essential,
where network traffic data is gathered from various sources within the cloud environment. This data typ-
ically includes packet headers, payload information, and metadata related to network communications.

Next, data preprocessing is performed to prepare the collected data for analysis. This involves tasks
such as data cleaning, normalization, feature extraction, and transformation to ensure consistency and
compatibility with the CNN model. Feature selection may also be applied to identify relevant attributes
that contribute to intrusion detection accuracy.

Supervised learning techniques are employed to train the CNN model subsequent to the prepro-
cessing of the data. The CNN model is successfully trained to distinguish between normal and anomalous
patterns using a labeled dataset that includes both examples of malicious and normal network traffic.

In the training phase, the CNN model picks up complex patterns and features from the network traffic
data, which helps it identify abnormalities in the data that could be signs of security breaches or intrusions.
Validation datasets measure the model's performance, and hyperparameters are adjusted to maximize de-
tection accuracy and reduce false positives.

Figure 1. Proposed system diagram

During the testing phase, the system is experienced with a variety of normal and abnormal conditions.
This permits the trained model to adapt to different types of behavior and improve its detection capabili-
ties. Data Acquisition Layer In the data acquisition layer, raw data is collected from the target system. This
raw data could include protocol bytes, bytes sent over TCP, or any other relevant information. The raw
data is then used to detect anomalies in the system's behavior. The data acquisition layer also includes
different parameters like duration, protocol, bytes, and TCP-Syn etc data. These metrics provide infor-
mation about the time duration of an event, the type of protocol being used, the number of bytes transmit-
ted, and the synchronization sequence used in the TCP handshake, respectively. Preprocessing Layer: In
the preprocessing layer, raw data is preprocessed to make it suitable for analysis. This could involve han-
dling missing-values, outliers, or noise in the data. The preprocessed data is then used as input for the
trained model. Handling Missing Value: One approach to handling missing values in the preprocessing

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

layer is by using a moving average, mean, or other interpolation technique. These techniques help to fill in
missing values and improve the accuracy of the trained model.

One way to handle missing values in the preprocessing layer is by using a moving-average. A moving-
average is calculated by taking the average of a fixed number of data points (usually called the "window
size") in a specified time period. For example, if there is a missing value in the duration column, a moving
average can be calculated by averaging the values in the previous three time periods. By using a moving
average to handle missing values, the system can maintain a smoother representation of the system's be-
havior over time. This can progress the accuracy of the trained model and reduce the likelihood of false
positives.

Mean: In addition to a moving average, you can also use the mean of the previous data points to
handle missing values. For example, if there is a missing value in the byte’s column, the mean can be cal-
culated by averaging the values in the previous three time periods. By using the mean to handle missing
values, the system can maintain a more stable representation of the system's behavior over time. This can
improve the accuracy of the trained model and reduce the likelihood of false positives. While both methods
have their advantages, the choice between using a moving average or the mean to handle missing values
will depend on the specific requirements and constraints of the project. Import Trained Model from DB:
The trained model is imported from a database. This database could be a remote server or a local file sys-
tem, depending on the specific implementation. If an anomaly is detected, the system takes appropriate
action, such as discarding the data or initiating further investigation.

Figure 2. Training Phase

Training phase model provides a high-level overview of a Machine Learning model, which consists

of multiple layers, each performing specific tasks. These layers are interconnected, and data flows through
them. Here is an explanation of each point in the image:

Data Acquisition Layer: This layer collects raw data from various sources such as sensors, files, or
databases. The duration of this layer determines how frequently data is collected.

Protocol: This indicates the type of communication protocol used for data transmission. Examples
include TCP, UDP, and HTTP.

Bytes: This represents the size of the data transmitted, usually measured in bytes.
TCP-Syn: This refers to the synchronization (SYN) phase of the TCP protocol.
Raw Data: This is the initial form of the data, as received from the data source.
Training Phase: This is the process of feeding the raw data into the ML model.
Preprocessing Layer: This layer performs various preprocessing tasks on the raw data before it is fed

into the model. Examples include handling missing values, scaling, and normalization. Handling Missing
Value: This part of the preprocessing layer addresses the issue of missing data in the dataset.

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Moving Average: This is a statistical method used to smooth out fluctuations in the data. It is often
used as a preprocessing step before training the machine learning model.

Application Layer: This layer predicts new, unseen data using the taught machine learning model.
Positive Predictive Value: The effectiveness of the machine learning model is assessed using this measure,
also called accuracy. It is the proportion of accurate forecasts to all of the forecasts produced.

Miss Rate: It represents the proportion of misses, or false negatives, to all true negatives in the dataset.
Sensitivity: It is measured as the ratio of real positives in the dataset to the total number of true

positives.
Specificity: The machine learning model's performance is assessed using this measure. The proportion

of real negatives in the dataset is divided by the number of genuine negatives.
Negative Predicted Value: This metric, known as specificity, is used to evaluate the performance of

the machine learning model. It is the ratio of the number of true negatives to the total number of negatives
predicted by the model.

4.Results

This graph displays the features and their corresponding importance in a dataset or model, with a
focus on network traffic analysis. The line graph represents each feature is importance, with values ranging
from 0.20 to 0.35. The importance values indicate the relative significance of each feature in the dataset or
model. The letter 'I' on the importance graph represents a breakpoint in the importance scale, making dis-
tinguishing features with similar importance easier.

Figure 3. Features and their corresponding importance

Feature importance for a machine learning model, specifically a model used to detect network attacks.

Feature importance is a way to rank a dataset's features (or variables) in order of their importance or rele-
vance in making predictions with the model.

In this image, the feature importance is listed in descending order on the right side, with the most
important feature at the top and the least important feature at the bottom. The feature names are listed in
the first column, and the corresponding importance score is listed in the second column.

For example, the most important feature for this model is "duration", with a score of 0.369176. This
means that the "duration" feature is the most useful for the model in making accurate predictions about
network attacks. The next most important feature is "packets", with a score of 0.251674, followed by "bytes"
with a score of 0.214719.

The importance of features can help us understand which features are most important for the model
and how the model makes its predictions. This can be useful for a variety of purposes, such as selecting the
most relevant features to include in the model, identifying potential sources of bias or error in the data,
and gaining insights into the underlying patterns and relationships in the data.

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Table 3. Feature Importance
Packet Feature Importance

1 Packets 0.251674
2 Bytes 0.214719
11 Attack_id 0.085197
6 Tcp_psh 0.027211
9 Tcp_fin 0.016209
7 Tcp_rst 0.015391
5 Tcp_ack 0.009944
8 Tcp_syn 0.008031
14 Proto_TCP 0.001692
13 Proto_ICMP 0.000580
15 Proto_UDP 0.000240
3 Flows 0.000000
4 Tcp_urg 0.000000
10 Tos 0.000000
12 Proto_GRE 0.000000

This graph, known as a Precision-Recall (PR) curve, is often used to assess how well binary classifiers

work. The classifier has been used in this instance to distinguish between several categories of network
data, including "attacker," "normal," "suspicious," "unknown," and "victim."

The proportion of real positive instances—that is, accurately recognized attackers, normal, etc.—out
of all actual positive cases in the data is shown by the x-axis of the graph. The accuracy, or the percentage
of actual positive instances among all cases the classifier predicted to be positive, is shown on the y-axis.

Plotting the accuracy and recall data for various categorization criteria results in the curve. For in-
stance, the classifier may predict a large number of examples as affirmative at a low threshold, which might
lead to a high recall but perhaps poor accuracy. The classifier becomes more conservative as the threshold
is raised, which may result in a decrease in recall, fewer false positives, and an improvement in accuracy.

With the exception of the "unknown" class, which has a slightly lower precision of 0.98, we can observe
in this graph that the classifier has extremely high recall and accuracy for all classes. This implies that the
classifier has a low percentage of false positives and false negatives and is very accurate at distinguishing
between the various kinds of network data.

All things considered, the PR curve is a helpful tool for assessing how well classifiers work, especially
when the classes are unbalanced or the cost of false positives and false negatives is large. The classifier
seems to be working quite well in this instance, with good recall and accuracy across all classes.

Figure 4. Precision-Recall (PR) curve

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Actual values to the predicted values for a binary classification problem with four possible outcomes:
"normal", "suspicious", "attacker", and "victim". The graph has two rows, with the actual values in the top
row and the predicted values in the bottom row. The first column shows the "normal" class, and we can
see that the actual values have some "normal" instances, while the predicted values also correctly predict
some "normal" instances.

The second column shows the "attacker" class, and we can see that the actual values have some "at-
tacker" instances, while the predicted values correctly predict some "attacker" instances, but also misclas-
sify some "normal" instances as "attacker". The third column shows the "victim" class, and we can see that
the actual values have some "victim" instances, while the predicted values correctly predict some "victim"
instances, but also misclassify some "normal" instances as "victim". The fourth column shows the "suspi-
cious" class, and we can see that the actual values have some "suspicious" instances, while the predicted
values correctly predict some "suspicious" instances, but also misclassify some "normal", "attacker", and
"victim" instances as "suspicious".

From the graph, we can see that the model has some difficulty distinguishing between the "normal",
"attacker", and "victim" classes, but it performs better in identifying the "suspicious" class. Overall, the
model's accuracy is moderate, but there is still room for improvement.

Figure 5. Actual Vs Predicted Values

a correlation matrix and some more relevant data for different network traffic aspects. The correlation
coefficient is a statistical metric used to characterise the strength and direction of a link between two vari-
ables.

The variables in this correlation matrix are:
Duration: how long a link remains active. The quantity of packets transmitted or received during a

connection is called a packet.
Bytes: the total amount of data transmitted and received across a connection
Flows: the quantity of distinct linkages the quantity of TCP packets with the URG flag set (tcp_urg).
TCP packet count with the ACK flag set is tcp_ack.
the quantity of TCP packets with the PSH flag set, or tcp_psh
the quantity of TCP packets with the RST flag set, or tcp_rst.
the quantity of TCP packets with the SYN flag set, or tcp_syn
TCP packet count with the FIN flag set is tcp_fin.
TOS: the IP header's Type of Service field
assault ID: a special identification for a particular kind of assault
Proto_GRE: the quantity of GRE protocol-using packets
Proto_ICMP: the quantity of ICMP-enabled packets
Proto_TCP: the quantity of TCP-enabled packets

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Proto_UDP: the quantity of UDP-enabled packets
The correlation coefficients vary from -1.0 to 1.0. The two variables have a high positive association

when the correlation coefficient is 1.0, which means that when one variable rises, the other variable also
rises. Strong negative correlation is shown by a correlation value of -1.0, which means that as one variable
rises, the other falls. There is no association between the two variables when the correlation coefficient is
0.

This indicates that the proportion of packets with these flags set tends to decrease with connection
length. Additionally, there are significant negative correlations found between packets suggesting that the
proportion of packets with these flags set tends to decline as the number of packets rises. The packets with
these flags set tend to drop as flows grow, according to the somewhat negative correlations between flows
and tcp. Weak negative correlations have been found between tos and tcp_ack and tcp_fin, suggesting that
the amount of packets with these flags set tends to drop significantly as the TOS value rises.

Attack_id and tcp_urg, modest positive correlations, suggesting that the frequency of packets with
these flags set tends to rise somewhat as the attack ID value grows. Proto_GRE has weak positive correla-
tions with tcp_syn, and tcp_fin, suggesting that the proportion of packets with these flags set tends to rise
somewhat as the number of GRE packets increases.

The number of packets with these flags set tends to increase slightly as the number of ICMP packets
increases, according to weak positive correlations between proto_ICMP and tcp_urg, tcp_ack, tcp_psh,
tcp_rst, tcp_syn, and tcp_fin. The number of packets with these flags set tends to increase as the number of
TCP packets increases, according to the moderate positive correlations between proto_TCP and tcp_urg,
tcp_ack, tcp_psh, tcp_rst, tcp_syn, and tcp_fin.

Proto_UDP has weak positive correlations with tcp_urg, tcp_ack, tcp_psh, tcp_rst, tcp_syn, and
tcp_fin, suggesting that the proportion of packets with these flags set tends to rise somewhat as the number
of UDP packets increases.

Figure 6. Correlation Matrix

Confusion Matrix is a visual representation of the performance of a classification model. It displays
the accuracy of a model in predicting the actual class of an observation, given its predicted class.

The numbers in the provided matrix are as follows:
True Positives : 10
True Negatives : 36,114
False Positives : 222
False Negatives (FN): 19,327
In this case,
TPR = 10 / (10 + 19,327) = 0.000969678 (around 0.1%).
In this case,

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

TNR = 36,114 / (36,114 + 222) = 0.998342953 (around 99.8%).
False Positive Rate (FPR): It is the ratio of false positives to the sum of true negatives and false posi-

tives.
 In this case,
FPR = 222 / (36,114 + 222) = 0.000585454 (around 0.06%).
False Negative Rate (FNR): It is also known as Miss Rate. It is the ratio of false negatives to the sum of

false negatives and true positives.
In this case,
FNR = 19,327 / (19,327 + 10) = 0.999039679 (around 99.9%).
These metrics help in evaluating the performance of a classification model.

Figure 7. Confusion Matrix

Classification Report of a Machine Learning model. The report is a detailed analysis of the perfor-
mance of the model, considering different types of activities. The categories in this report are attacker,
normal, suspicious, unknown, victim, and other types.

The table in the report includes various metrics:
1. Precision matric
2. Recall (Sensitivity)
3. F1-Score:
4. Support:
The table also shows the Accuracy of the model, which is the ratio of correctly predicted instances to

the total instances.
In addition to these metrics, the report provides average values:
1. Macro Average: It calculates the average of the metric values for each class and then takes the

average of those.
2. Weighted Average: It calculates the average of the metric values for each class, giving more

weight to the classes with higher number of instances.
In this case, the model's performance is very good, with high values for precision, recall, f1-score, and

accuracy. The report also indicates that the model can handle various types of activities effectively.
Table 4. Classification deatils

 Precision Recall F1-score Support

Attacker 1.00 0.99 1.00 303

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

Normal 0.98 0.98 0.98 1034

Suspicious 0.99 0.99 0.99 36319

Unknown 0.93 0.92 0.93 2939

Victim 0.99 1.00 1.00 304

Accuracy 0.99 40899

Macro Avg 0.98 0.98 0.98 40899

Weighted avg 0.99 0.99 0.99 40899

The heatmap shows occurrences of a projected class in each column and instances of an actual class
in each row. The number of cases when the model predicted one class but the true label was the actual
class is represented by the value at the intersection of the row and column. In this particular instance, the
confusion matrix represents a model's performance on a multiclass classification issue. The horizontal axis
represents the expected labels, while the vertical axis represents the genuine labels. The number of times
the model successfully predicted the class is represented by the diagonal members of the matrix, while the
number of times the model incorrectly predicted the off-diagonal components represent the class. Metrics
like accuracy, precision, recall, and F1-score may be used to assess the model's performance. The model's
accuracy in this instance was 98.90%, meaning that 98.90% of the cases were properly classified by the
model.

5. Conclusions

By using CNNs, valuable characteristics may be extracted from network traffic data, which helps the
model recognize unusual patterns that might be signs of security vulnerabilities. When compared to con-
ventional techniques, the accuracy of the CNN-based intrusion detection system was higher. CNNs' capac-
ity to automatically derive hierarchical representations from unprocessed data allows for more accurate
threat identification, both known and unknown. Because cyber threats are always changing, intrusion de-
tection systems must also be flexible. CNNs showed greater resistance against changing attack techniques
because of their capacity to learn and change patterns over time. The CNN model addressed a prevalent
issue in intrusion detection systems, which demonstrated a significant decrease in false positives. This en-
hancement helps lessen the workload on security teams and better uses available resources.

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

References
1. Iqbal, S., Kiah, L.M., Dhaghighi, B., Hussain, M., Khan, S., Khan, M.K. & Choo, K.R. (2016). On cloud security attacks: A taxon-

omy and intrusion detection and prevention as a service. International Journal of Network and Computer Applications, 74, 98-
120.

2. Wasim Khan, M. H. (2022). An unsupervised deep learning ensemble model for anomaly detection in static attributed social
networks. International Journal of Cognitive Computing in Engineering, 153-160.

3. Khan, W. & Haroon, M. (2022). An efficient framework for anomaly detection in attributed social networks. Int. J. Inf. Tecnol.,
14, 3069– 3076.

4. N. Tabassum, A. Namoun, T. Alyas, A. Tufail, M. Taqi, and K. Kim,(2023) “applied sciences Classification of Bugs in Cloud
Computing Applications Using Machine Learning Techniques.

5. Husain, Mohammad Salman & Haroon, Dr. Mohammad. (2020). An enriched information security framework from various
attacks in the IoT. International Journal of Innovative Research in Computer Science & Technology (IJIRCST),8(3). Available
 at: SSRN: https://ssrn.com/abstract=3672418.

6. Zeeshan Ali Siddiqui & Mohd. Haroon. (2023). Research on significant factors affecting adoption of blockchain technology for
enterprise distributed applications based on integrated MCDM FCEM-MULTIMOORA-FG method. Engineering Applications
of Artificial Intelligence,118,105699.

7. Kumar, M., Hanumanthappa, M. & Kumar, T.V.S. (2012). Intrusion detection system using grid computing using Snort.
International Conference on Computing, Communication and Applications, 1-6.

8. Kene, S.G. & Theng, D.P. (2015). A review on intrusion detection techniques for cloud computing and security challenges. IEEE
Sponsored 2nd International Conference on Electronics and Communication Systems, pp. 227-232.

9. Ibrahim, D. (2016). An overview of soft computing. 12th International Conference on Application of Fuzzy Systems and Soft
Computing, pp. 34-38.

10. T. Alyas, I. Javed, A. Namoun, A. Tufail, S. Alshmrany, and N. Tabassum (2022), “Live migration of virtual machines using a
mamdani fuzzy inference system,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3019–3033

11. Idhammad, M., Afdel, K. & Belouch, M. (2018). Distributed intrusion detection system for cloud environments based on data
mining techniques. The First International Conference on Intelligent Computing in Data Sciences, 35-41.

12. Gill, S.S. & Buyya, R. (2018). SECURE: Self-protection approach in cloud resource management. Journal of IEEE Cloud Compu-
ting, 5(1), 60-72.

13. Belouch, M., El Hadaj, S., & Idhammad, M. (2018). Performance evaluation of intrusion detection based on machine learning
using Apache Spark. Procedia Computer Science, 127, 1-6.

14. Gill, S. S., & Buyya, R. (2018). A taxonomy and future directions for sustainable cloud computing: 360-degree view. ACM Com-
puting Surveys (CSUR), 51(5), 1-33

15. Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion detection system through feature selection
analysis and building hybrid efficient model. Journal of Computational Science, 25, 152-160.

16. Alzahrani, S., & Hong, L. (2018, July). Detection of distributed denial of service (DDoS) attacks using artificial intelligence on
cloud. In 2018 IEEE World Congress on Services (SERVICES) (pp. 35-36). IEEE.

17. N. Tabassum, T. Alyas, M. Hamid, M. Saleem, S. Malik, and S. Binish Zahra (2022), “QoS Based Cloud Security Evaluation
Using Neuro Fuzzy Model,” Comput. Mater. Contin., vol. 70, no. 1, pp. 1127–1140.

18. El-Alfy, E. S. M., & Al-Obeidat, F. N. (2014). A multicriterion fuzzy classification method with greedy attribute selection for
anomaly-based intrusion detection. Procedia Computer Science, 34, 55-62.

19. Xiong, W., Hu, H., Xiong, N., Yang, L. T., Peng, W. C., Wang, X., & Qu, Y. (2014). Anomaly secure detection methods by ana-
lyzing dynamic characteristics of the network traffic in cloud communications. Information Sciences, 258, 403-415.

20. https://www.kaggle.com/code/dhoogla/cidds-001-01-oner-0-5auroc
21. S. Rajagopal and P. P. Kundapur, “Towards effective network intrusion detection: from concept to creation on Azure cloud,”

IEEE Access, vol. 9, Article ID 19723, 2021.
22. S. Rajagopal and P. P. Kundapur, “Towards effective network intrusion detection: from concept to creation on Azure cloud,”

IEEE Access, vol. 9, Article ID 19723, 2021.
23. J. K. Samriya and N. Kumar, “A novel intrusion detection system using hybrid clustering-optimization approach in cloud com-

puting,” Materials Today, 2020.
24. N. Jaber and S. U. Rehman, “FCM–SVM based intrusion detection system for cloud computing,” Cluster Computing, vol. 23,

pp. 1–11, 2020.
25. R. Rajendran, S. V. N. Santhosh Kumar, Y. Palanichamy, and K. Arputharaj, “Detection of DoS attacks in cloud networks using

intelligent rule based classification system,” Cluster Computing, vol. 22, no. 1, pp. 423–434, 2019.
26. P. Ghosh, A. Karmakar, J. Sharma, and S. Phadikar, “CS-PSO based intrusion detection system in cloud environment,” Emerg-

ing Technologies in Data Mining and Information Security, Springer, Berlin, Germany, pp. 261–269, 2019.
27. S. Malik, N. Tabassum, M. Saleem, T. Alyas, M. Hamid, and U. Farooq(2022.), “Cloud-IoT Integration: Cloud Service Frame-

work for M2M Communication,” Intell. Autom. Soft Comput., vol. 31, no. 1, pp. 471–480.
28. E. Besharati, M. Naderan, and E. Namjoo, “LR-HIDS: logistic regression host-based intrusion detection system for cloud envi-

ronments,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 9, pp. 3669–3692, 2019.

Journal of Computing & Biomedical Informatics Volume 06 Issue 02

ID : 376-0602/2024

29. R. Patil, H. Dudeja, and C. Modi, “Designing an efficient security framework for detecting intrusions in virtual network of cloud
computing,” Computers & Security, vol. 85, pp. 402–422, 2019.

30. Z. Chiba, “Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of ma-
chine learning algorithms,” Computers & Security, vol. 86, pp. 219–317, 2019.

31. M. I. Sarwar, Q. Abbas, T. Alyas, A. Alzahrani, T. Alghamdi, and Y. Alsaawy (2023), “Digital Transformation of Public Sector
Governance With IT Service Management–A Pilot Study,” IEEE Access, vol. 11, no. January, pp. 6490–6512, doi: 10.1109/AC-
CESS.2023.3237550.

