
Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02 
          ISSN: 2710 - 1606                                                                     2024 

ID : 374-0602/2024  

Research Article 
https://doi.org/10.56979/602/2024 
 

Breast Cancer Diagnosis by Exploiting the Permutations of Principal Components 
by Ensemble Classification 

 
Aimen Sikander1, and Iqbal Murtza1* 

 

1Faculty of Computing & AI, Air University, Islamabad, Pakistan. 
*Corresponding Author: Iqbal Murtza. Email: iqbal.murtza@mail.au.edu.pk 

 
Received: January 01, 2024 Accepted: February 26, 2024 Published: March 01, 2024 

________________________________________________________________________________________________________ 
Abstract: In many breast cancer computer-aided diagnosis problems with larger feature dimensions 
and fewer feature instances, the classification does not get optimal training. This is because a 
decision boundary is represented by the number of parameters directly proportional to the feature 
dimensions. Since the optimal training of such high-dimensional features requires a large training 
set. Unluckily, if the training set is not sufficiently large to generate good n/l ratio, the training 
results in an ineffective and inefficient classification model. To resolve the problem of large 
dimensions, the conventional employment of feature reduction techniques results in efficient 
training however it yields the degraded classification performance. In this paper, we consider this 
problem to have effective and efficient training in large dimensional datasets when the available 
dataset is not sufficiently large. For this purpose, we hybridize principal component analysis with 
ensemble classification. For this, different combinations of principal dimensions have been 
determined by the concept of power sets in mathematics. A dedicated base learner then exploits 
each principal dimension combination. Then, all these base learners are combined to construct a 
hybrid ensemble principal component analysis-based classifier, Ens-PCA. The proposed Ens-PCA 
technique is tested using Wisconsin diagnostic breast cancer (WDBC) data set and the results show 
its outperformance as compared to the contemporary principal component analysis and ensemble 
classification techniques. 
 
Keywords: Machine learning; Ensemble classification; Principal component analysis; set theory; 
Data sampling. 

 
1. Introduction 

In recent decades, the statistics on breast cancer are alarming. Each year around one million ladies are 
identified with breast cancer globally. In 2020 around 2300 thousand new cases were identified with 
women breast cancer. Unluckily, breast cancer has become the most frequently detected cancer, with 2.3 
million new cases [1, 2]. According to recent insights into Breast cancer, Pakistan has the highest rate of 
breast cancer in Asia. Every year, 90000 new patients are diagnosed with breast cancer, and almost 40000 
patients die [3]. Breast cancer can be cured sufficiently with up to an 81% survival rate if diagnosed in the 
initial state. Most women are later diagnosed with cancer because it's asymptomatic and spreads to other 
organs. Breast cancer originates primarily in adipose tissues, connective tissues, ducts, and lobules of the 
breast [4]. In this regard, accurate diagnosis of cancer is very critical. Recently, the deployment of machine 
learning techniques for computer-aided cancer diagnosis is getting the attention of the research community 
[5, 6].  

In many cancer computer-aided diagnosis problems, the task of classification is for precise and accu-
rate decisions. However, in many problems, the presence of larger dimensional feature space affects the 
classification and degrades its performance. This is because, the higher dimensional feature space has as-
sociated problems such as the curse of dimensionality, inefficient training, and ineffective testing [8-10]. 
This is because, the classification boundary is represented by the number of parameters proportional to the 
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number of feature dimensions. For example, a single linear discriminating in n dimensional feature space 
is represented by 2𝑛 parameters, whereas, second order single discriminating boundary needs 3𝑛 param-
eters.  

 
Figure 1. Worldwide statistics of various cancers reported by the international agency for research 

on cancer, world health organization (WHO), showing the breast cancer is the most frequent [7] 
Because of the above proportional parameter requirements in the classification model, the training 

phase of the most classification techniques uses gradient descent to optimize the choice of these parame-
ters. Unluckily, the efficiency of such optimization techniques degrades as the number of parameters in-
creases which results in slow training [8]. In addition to this, the chance of finding the global optimal point 
in this parameter space becomes less probable as well which results in an immature trained classification 
model resulting in a downgraded classification of samples in testing phase [11, 12]. To address this curse 
of dimensionality, the employment of feature reduction techniques, although gained substantial attention 
of the research community but, it results in downgraded classification performance. The reason of this 
downgraded performance is because of the information loss which is although partial but it plays a role in 
the degradation [13]. In this paper we consider this problem to boost the classification performance affected 
by feature reduction techniques.  

Principal component analysis (PCA) is a technique for dimensionality reduction, which can poten-
tially improve the accuracy of a model by reducing the number of input features. It is a classical statistical 
method for transforming attributes of a dataset into a new set of uncorrelated attributes called principal 
components (PCs). In this way, it is capable extracting compact information from high dimensional spectra 
while maximally retaining as much of the variability of the dataset as possible [9]. This process is accom-
plished by eigenvector decomposition followed by neglecting the unimportant directions in which sample 
variances are insignificant such that the number of these directions approximates the dimensionality of the 
whole sample set. Alongside these strengths, unluckily, PCA has some limitations as follows: 
1. It is sensitive to the scale of the input features. It is generally recommended to standardize the data 

before applying PCA [8]. 
2. It is a linear technique and may not be appropriate for data that is highly nonlinear [9]. 
3. It is a linear technique and does not capture non-linear interactions between variables [14]. 
4. It is an unsupervised technique and does not take into account any labels or class information. 
5. It is not robust to outliers, which can have a disproportionate effect on the principal components [15]. 
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6. It only considers the most important 𝑘 principal components, which may not be enough to capture all 
the information in the data. 

7. It can be affected by correlated features and thus making the interpretation of principal component 
difficult. 
Because of these constraints, PCA may degrade the accuracy of a model. Some of the ways that PCA 

can degrade accuracy include [13]: 
1. Loss of information: PCA is a linear technique that works by finding the directions in the data that 

explain the most variance. By reducing the dimensionality of the data, PCA can also remove important 
information that is not captured by the principal components. 

2. Overfitting: When a PCA is used as a preprocessing step before training a model, it can introduce 
overfitting if the model is not regularized properly. 

3. Non-linear relationships: since PCA is a linear technique, it may not be able to capture non-linear rela-
tionships between the input features. If the data has complex non-linear relationships, PCA may not 
be able to extract the most informative features, leading to a decrease in accuracy. 

4. Outliers: PCA is sensitive to outliers, which can have a disproportionate effect on the principal com-
ponents. If the data has outliers, PCA may remove important information from the data, leading to a 
decrease in accuracy [15]. 

5. It is also important to note that since PCA is an unsupervised technique, it does not consider the class 
information. Therefore, PCA-based dimensionality reduction may be suboptimal for supervised learn-
ing problems, where the goal is to find features that are informative for a specific task [16, 17].  
In this research, we propose a dimension aggregation techniques to fix such problem such that accu-

racy increases. 
 
2. Materials and Methods  

Although the nature of the proposed methodology is generic, but here, it is presented for diagnosing 
breast cancer. For this, it considers a number of medical features. It comprises multiple information pro-
cessing layers from feeding feature vector to preprocessing layer followed by PCA transformation, feature 
selection (dimensionality reduction), and features power set generation based data sampling and exploi-
tation of each power set by an appropriate classification technique. Among these information-processing 
steps, the major novelty of the proposed technique lies in the power set generation of the feature dimen-
sions. The flow diagram of the proposed system is shown in Figure 2. The following subsections describe 
these information processing layers.   
2.1 Feature Vector 

The first layer of the proposed technique is a vector representation of tumor based upon its statistical 
characteristics consisting eleven averages (radius, texture, perimeter, area, compactness, concavity, sym-
metry, fractal dimensions, smoothness, concave points, & symmetry error), five standard deviations (frac-
tal dimension, radius, texture, perimeter, & area), and nine worst measurements (texture, perimeter, area, 
smoothness, compactness, concavity, concave points, symmetry, & fractal dimension) as shown in Eq. (1) 
as follows:  

 
 

2.2 Data Normalization 
The feature vectors, which comes from the dataset, have un-normalized data. Thereby, in prepro-

cessing, normalization is performed. Unluckily, the features have different ranges, which may suffer clas-
sification. Thereby, after data encoding, normalization is performed on each feature to scale data with zero 
mean and unit variance according to Eq. Error! Reference source not found.) as given below:  

 

𝑥! =
𝑥" − 𝜇
𝜎  (2) 

where, 𝜇 is mean and 𝜎 is standard deviation of the feature values. It is to note that this normaliza-
tion is performed on each feature. Additionally, the same means and standard deviations computed in the 
training process to be used when normalizing a testing sample. 

𝐱 = [𝑥#, 𝑥$, … , 𝑥%] (1) 
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Figure 2. Flow diagram of the proposed methodology 
 

2.3 Principal Component Transformation 
Principal component analysis is although a famous technique used for feature reduction, but it may 

be ineffective if the dataset is uncorrelated. To check whether principal component analysis is suitable for 
feature reduction, correlation coefficient matrix of the dataset was computed according Eq. (3) as shown 
graphically in Figure 1. Since, the dataset contains good correlations, the employment of principal compo-
nent analysis is suitable for it.  

In the PCA decomposition of the dataset, it is to note that in the training of the proposed system, the 
whole dataset to be used for computation of principal components followed by the elimination of low 
variance principal components such that the chosen principal components covering at least 95% variance 
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of the whole dataset. Whereas, in testing of an unknown sample, already learnt principal components to 
be used for feature reduction.  

 

[𝑦#, 𝑦$, … , 𝑦&] = ℑ([𝑥#, 𝑥$, … , 𝑥%]) (3) 
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 (4) 

 
2.4 Feature Selection 

Based upon the usefulness of the principal components computed using Eq. (4), high variance com-
ponents are to be selected for further processing. It is to note that the incorporation of principal components 
is only beneficial if there is a strong correlation between data dimensions. Thereby, if the data is already 
uncorrelated the employment of layer 2.3 and 2.4 is likely not to be useful. Thereby, in such cases, the 
proposed model is to be start continue to features’ power set generation after normalization. 
2.5 Features’ Power Set Generation 

After PCA based dimension reduction, the features are although compact and uncorrelated resulting 
in efficient training and testing but the classification performance may be decreased. This purpose of this 
layer is to exploit each possible combination of features for classification purpose. For this, the concept of 
the number of arrangements using combinations is employed. Thereby, selecting 𝑘 features out of 𝑚 fea-
tures has C&(D  possibilities. We choose 𝑘 ∈ 1,1,3, … ,𝑚  and thus generating total 2& − 1  sub feature 
spaces as follows in Eq. (5):  

 

IJ𝑚𝑘K
&

()*

= 2& (5) 

 
From these 2& − 1 sub feature spaces, the probability of linear classification using a particular sub-

space having 𝑙 dimensions can be computed using Cover’s theorem [18] as follows in Eq. (6) 

𝑝+ =
1

2,-#IJ𝑁 − 1𝑘 K
+

()*

 (6) 

Using these probabilities, the probability of nonlinear classification is possible only if each 𝑙 dimen-
sion subspace cannot provide linear classification i.e., the product of C1 − 𝑃(𝑙)D and thus, the probability 
of linear classification can be computed as follows in Eq. (7). The formulation shown in this equation has 
characteristics of being  

𝑝 = 1 −P(1 − 𝑝+)
&

+)#

 (7) 

Because of its computation from logical disjunction, it yields 𝑝 > 𝑝+ for all 𝑙. To understand it, con-
sider 𝑚 = 2 generating the probability as in Eq. (8) 

 
𝑝 = 1 − (1 − 𝑝#)(1 − 𝑝$) = 𝑝# + 𝑝$ − 𝑝#𝑝$ (8) 
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Since, 0 ≤ 𝑝#, 𝑝$ ≤ 1  thereby, 𝑝#, 𝑝$ ≤ 𝑝#, 𝑝$  which implies that 𝑝# − 𝑝#𝑝$ ≥ 0  and 𝑝$ − 𝑝#𝑝$ ≥ 0 
and thus, Eq. (7) implies that 𝑝 ≥ 𝑝#, 𝑝$. It is to note that if 0 < 𝑝#, 𝑝$ < 1 then 𝑝 > 𝑝#, 𝑝$ i.e., p is always 
greater than 𝑝# and 𝑝$. This is also illustrated in Figure 3 and Table 1.  

 

(a) 

 

 
(b) 

Figure 3. Graphical illustration of the probability computed from Eq. (7) (a) plot and (b) tabular 
Table 1.Comparison for various instances of individual and combined probability 

Sr. # 𝒑𝟏 𝒑𝟐 𝒑 = 𝟏 − (𝟏 − 𝒑𝟏)(𝟏 − 𝒑𝟐) 

1 0.0 0.0 0 
2 0.1 0.1 0.19 
3 0.2 0.2 0.36 
4 0.3 0.3 0.51 
5 0.4 0.4 0.64 
6 0.5 0.5 0.75 
7 0.6 0.6 0.84 
8 0.7 0.7 0.94 
9 0.8 0.8 0.96 
10 0.9 0.9 0.99 
11 1 1 1 

 
2.6 Dedicated Classification Layer 

After the generation of 2& − 1 overlapping subspaces of the feature space, each subspace to be ex-
ploited by a dedicated base learner. For this, we employed bagging based combined classification based 
open majority voting of base learners generated by tree inducers. Such that data manipulation is provided 
by the power set generation of PCA dimensions as mentioned in Figure 2.  
2.7 Decision Aggregation 

The employment of dedicated classification for each data subset results in several labels for a testing 
sample. These labels need to be aggregated to transform several labels into one and final label. This com-
ponent is aimed for this purpose. Thereby, when a test sample is processed by this component, the pro-
posed model is logically finished. 
 
3. Results 

This section provides a detailed description of the experiments performed, evaluation metrics, and 
corresponding results. In addition, it also provides a brief description of the datasets used for the evalua-
tion. Different ensemble models were used to find out which ensemble model performed better on our 
data.  
3.1 Dataset  
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In this research work, a dataset regarding breast cancer was utilized. Wisconsin Diagnostic Breast 
Cancer (WDBC) Dataset is publicly available from the UCI machine learning repository. There are precisely 
32 attributes in WDBC dataset and 569 instances. In these 32 features, one attribute is patient ID. All other 
attributes are deducted from a digitalized image that defines ten real-value features of the FNA sample 
calculated for each cell nucleus to determine whether a patient is diagnosed with malignant or benign. 
Three hundred fifty-seven cases were identified as “benign,” and the remaining were classified as “malig-
nant.” 

 
Figure 4. Graphical visualization of correlation coefficient matrix 

3.2 Dataset Normalization 
For normalization as stated in Eq. Error! Reference source not found.), mean and standard deviation 

of each feature were computed as shown in Table 2. It is to note that the same parameters computed in 
training phase will be used to normalize when processing an unknown sample to predict its label.  
3.3 Principal Component Analysis 

After preprocessing the dataset, we computed dataset correlation matrix as defined in Eq. (4) as visu-
alized in Figure 4. By observing this matrix, it is to note that there are strong correlations among dataset 
dimensions thereby, it is beneficial to employ the principal component analysis to transform into uncorre-
lated dataset for further effective processing.  

 
Table 2. Mean and standard deviation of each feature in the WDBC dataset 

Sr. # Feature 
Mean 

(𝝁) 
Deviation 

(𝝈) 
01 mean radius 14.13 3.52 
02 mean texture 19.29 4.30 
03 mean perimeter 91.97 24.28 
04 mean area 654.89 351.60 
05 mean smoothness 0.10 0.01 
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06 mean compactness 0.10 0.05 
07 mean concavity 0.09 0.08 
08 mean concave points 0.05 0.04 
09 mean symmetry 0.18 0.03 
10 mean fractal dimension 0.06 0.01 
11 radius error 0.41 0.28 
12 texture error 1.22 0.55 
13 perimeter error 2.87 2.02 
14 area error 40.34 45.45 
15 smoothness error 0.01 0.00 
16 compactness error 0.03 0.02 
17 concavity error 0.03 0.03 
18 concave points error 0.01 0.01 
19 symmetry error 0.02 0.01 
20 fractal dimension error 0.00 0.00 
21 worst radius 16.27 4.83 
22 worst texture 25.68 6.14 
23 worst perimeter 107.26 33.57 
24 worst area 880.58 568.86 
25 worst smoothness 0.13 0.02 
26 worst compactness 0.25 0.16 
27 worst concavity 0.27 0.21 
28 worst concave points 0.11 0.07 
29 worst symmetry 0.29 0.06 
30 worst fractal dimension 0.08 0.02 

 
Table 3. Illustration of generating the power set consisting subspaces of three (𝑚 = 5) PCA dimensional 

feature space 

Subset # 
Principal Component’s Presence 

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 

0 0 0 0 0 0 

1 0 0 0 0 1 

2 0 0 0 1 0 

3 0 0 0 1 1 

4 0 0 1 0 0 

5 0 0 1 0 1 

6 0 0 1 1 0 

7 0 0 1 1 1 

8 0 1 0 0 0 

9 0 1 0 0 1 

10 0 1 0 1 0 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 374-0602/2024  

11 0 1 0 1 1 

12 0 1 1 0 0 

13 0 1 1 0 1 

14 0 1 1 1 0 

15 0 1 1 1 1 

16 1 0 0 0 0 

17 1 0 0 0 1 

18 1 0 0 1 0 

19 1 0 0 1 1 

20 1 0 1 0 0 

21 1 0 1 0 1 

22 1 0 1 1 0 

23 1 0 1 1 1 

24 1 1 0 0 0 

25 1 1 0 0 1 

26 1 1 0 1 0 

27 1 1 0 1 1 

28 1 1 1 0 0 

29 1 1 1 0 1 

30 1 1 1 1 0 

𝟐𝟓 = 𝟑𝟏 1 1 1 1 1 
3.4 Feature Selection 

After transforming the correlated dataset into uncorrelated dataset, we noted that first five principal 
components covering 85% of total variance, as shown in the Figure 5. It is to note that the number of input 
dimensions exponentially affects the number of power sets. If the number is large, it will enhance the com-
plexity of the proposed model. This is the reason of choosing the minimum number of principal compo-
nents, although they are not covered even 95% variance. However, the proposed model is so powerful that 
it is capable of boosting accuracy even with these few principal components as presented in the following 
subsections.  

 
Figure 5. Variance of principal components versus prinfcipal components 

3.5 Power Set Generation  
Since we have chosen five principal dimensions, thereby, according to Eq. (5) the size of power set is 

23 = 31. The data subsets are achieved using the concept of binary counting as described in Table 3. For 
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example, the first data subset (0) is the empty set and it contains none of the input PCA dimension. The 
next subset (1) contains only fifth PCA dimension and so on. 
3.6 Dedicated Classification 

After generating power set consisting all (23) sub feature spaces, the next layer considers multiple 
base inducers such as random forest, Naïve Bayes, decision tree, and logistic regression. Because of the 
nature of dedicated classification for each subspace, this step resulted in 𝟐𝟓 dedicated base learners for 
each inducer. 
3.7 Decision Aggregation 

The dedicated classification layer yields a number of output labels, one from each dedicated base 
learner. These decisions are combined using simple majority voting. However, if the problem is cost-sen-
sitive, then majority voting may be replaced by minority voting of the classification labels. The classifica-
tion confusion matrices of different classifiers are presented in Table 4. Whereas, the classification param-
eters are presented in Table 5 and ROC is shown in Figure 6. 
Table 4. Confusion matrices of different classifiers before and after applying the proposed data sampling 

technique 
Sr. # Classifier TP FN FP TN 
01 Decision Tree 62 2 8 100 
02 Ensemble Decision Tree 46 1 1 66 
03 Logistic Regression 45 2 2 65 
04 Ensemble Logistic Regression 44 3 2 65 
05 Naïve Bayes 42 5 6 61 
06 Ensemble Naïve Bayes 42 5 3 64 
07 Random Forest 61 2 7 101 
08 Ensemble Random Forest 46 1 0 67 

Table 5. Performance parameters of different classification techniques before and after applying the 
proposed data sampling technique 

Sr. # Classifier Accuracy Precision Recall/TPR TNR FPR FNR 

01 Decision Tree 0.942 0.886 0.969 0.926 
0.07

4 
0.03

1 

02 Ensemble Decision Tree 0.982 0.979 0.979 0.985 
0.01

5 
0.02

1 

03 Logistic Regression 0.965 0.957 0.957 0.970 
0.03

0 
0.04

3 

04 
Ensemble Logistic 
Regression 

0.956 0.957 0.936 0.970 
0.03

0 
0.06

4 

05 Naïve Bayes 0.904 0.875 0.894 0.910 
0.09

0 
0.10

6 

06 Ensemble Naïve Bayes 0.930 0.933 0.894 0.955 
0.04

5 
0.10

6 

07 Random Forest 0.947 0.897 0.968 0.935 
0.06

5 
0.03

2 

08 
Ensemble Random 
Forest 

0.991 1.000 0.979 1.000 
0.00

0 
0.02

1 
 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 374-0602/2024  

 

Figure 6. ROC curve based comparison between different classification  techniques 
 

4. Discussion 
An effective classification is represented by its capability to differentiate various classes more accu-

rately and more precisely. Other than accuracy and precision, various other parameters such as true posi-
tive rate, true negative rate, false positive rate, and false negative rate are also used to assess the effective-
ness of classification. It can be noticed by observing all performance measure presented in Table 5 that the 
proposed data sampling technique inspired by the mechanism of generating subsets of power set resulted 
in more accurate and more precise classification. This has been possible because of the nature of data sam-
pling which extracted a number of feature spaces (perspectives|) empowered by the dedicated classifica-
tions. Combing the individual decisions of a number of dedicated classifiers for ensemble classification 
makes the overall classification capable of exploiting effected a number of feature spaces and thus boosting 
the classification performance parameters. For example, consider row 7 and 8 of Table 5 representing the 
classification parameters of random forest before and after the proposed data sampling based ensemble 
classification. It is observed that the proposed data sampling based ensemble classification resulted in 
boosting accuracy from 0.947 to 0.991, precision from 0.897 to 1, true positive rate from 0.968 to 0.979, and 
true positive rate from 0.935 to 1. On the other hand, it resulted in a reduction of false positive rate from 
0.065 to 0 and false negative rate from 0.032 to 0.021. 
 
5. Conclusions 

This research successfully considered the challenging problem of classification for a large dimensional 
feature space. The reason of the difficulty in such feature spaces is because; exploiting a large dimensional 
feature space is associated with deducing a decision boundary from the dataset. Since, decision boundary 
is described by the parameters whose count is proportional to the number of feature dimensions and thus, 
classification in large dimensional feature space requires a large number of parameters to be optimized. 
Unluckily, if the number of instances in the dataset is relatively small as compared to its feature dimension 
then this optimization (training process) is challenging which result in classification with constrained ac-
curacy. Additionally, this process also resulted in time taking training process. This research considers this 
problem and it is motivated by the generation of power set of set theory. For this, it considers the dimen-
sions of feature space as elements of set and generates all subsets to build the power set. Although this 
research employs principal component analysis, but it is only recommended subject to the presence of 
correlated feature space. The proposed technique is highly beneficial for the large dimensional feature 
spaces since this particular feature sampling increases the probability of effective classification according 
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to Cover’s theorem as validated by the experiments. However, for low dimensional feature space the pro-
posed technique may behave inefficacy. 
 
Data Availability Statement: The authors declared that the datasets used in this research are publicly available. 
Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relation-
ships that could have influenced the work reported in this paper. 
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