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Abstract: Throughout recorded history, cardiovascular diseases have posed a persistent threat, 
claiming numerous lives. Effective and timely testing is pivotal in preventing fatalities. Among the 
available testing options, the Electrocardiogram (ECG) stands out as both practical and cost-effective, 
capable of diagnosing various abnormalities. Recently, there has been a notable emphasis on 
accurately classifying heartbeats. Traditionally, heartbeat analysis has been approached through 
manual or automated methods. Manual analysis involves cardiologists, while automated analysis 
relies on computational algorithms. Automated techniques have gained significant popularity in 
recent years and have achieved considerable success. However, despite this progress, there is still a 
need for further improvement to achieve deployable accuracy. Many current studies utilize deep 
learning models in a transfer learning approach for heartbeat classification. While transfer learning 
offers advantages, it also presents disadvantages such as domain mismatch, task-specific features, 
interpretability concerns, model bias, and generalization issues. Therefore, in this study, instead of 
employing transfer learning, a deep convolutional neural network combined with twofold focal loss 
is utilized for heartbeat classification. The proposed approach has demonstrated the ability to 
accurately classify five distinct arrhythmias according to the AAMI EC57 standard. Testing was 
conducted using the MIT-BIH and PTB Diagnostics datasets from PhysionNet. The results indicate 
that the proposed method achieves an average accuracy of 99.8% in classifying arrhythmias. 
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1. Introduction 

An integral part of the toolkit used by cardiologists and other medical professionals, the 
electrocardiogram (ECG) is widely used to monitor heart health on a constant basis [1]. However, the 
manual analysis of ECG signals is very difficult since it involves identifying and classifying the many 
waveforms and morphologies that are present in the signal [2]. This is similar to closely examining different 
time-series data. Because these signals are so complex, human examination of them takes an exceptionally 
long time and is prone to inaccuracy [3, 4]. 

Given the significant impact of cardiovascular diseases, which cause almost one-third of all deaths 
worldwide [5], it is necessary to recognize the vital role that an accurate diagnosis plays in this situation. 
Interestingly, millions of people suffer from irregular heartbeats, which can be fatal in certain situations. 
This is why it is so desirable to find an accurate and affordable diagnosis of arrhythmic heartbeats [6]. By 
combining modern technologies with automated analytic techniques, it may be possible to greatly improve 
the accuracy and timeliness of ECG interpretation, leading to more prompt and dependable cardiovascular 
health interventions. 

In response to the challenges involved in manually examining the Electrocardiogram (ECG) signal, 
numerous studies in the literature have investigated the application of machine learning approaches to 
precisely detect irregularities within the signal [7], [8]. Preprocessing is typically incorporated into these 
techniques in an effort to enhance signal quality. This might entail applying band-pass filters to the signal, 
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for example. After that, the signals are processed to extract features that were manually generated, most of 
which are statistical summaries of the signal frames. These features are used in later research to finish the 
final classification task. 

By improving the signal's quality, the preprocessing stage helps to detect anomalies more successfully. 
Methods like band-pass filtering are essential for separating out pertinent data and cutting down on noise, 
which makes it easier to do more precise analysis later on. Subsequently, the process of extracting 
handcrafted features entails identifying significant statistical characteristics inside signal frames, which 
include crucial information for the classification step that follows. 

Conventional machine learning techniques have been widely used in ECG analysis for the 
classification problem. These include of Support Vector Machines, decision trees, multi-layer perceptron, 
and other tried-and-true techniques [9, 10, 11]. By using the features that have been retrieved, these 
inference engines are able to identify patterns and abnormalities in the ECG data, which helps to accurately 
classify different cardiac diseases. In the field of cardiovascular health, the use of machine learning 
techniques not only simplifies the analytic process but also has the potential to improve diagnostic speed 
and accuracy. 

While handcrafted features have historically been employed in machine learning research to describe 
signals, new advancements in the field indicate that automated feature extraction and representation 
techniques can provide better scalability and potentially lead to more accurate predictions. Unlike 
handcrafted features, an end-to-end deep learning architecture enables the machine to autonomously learn 
and adjust features that are specifically matched to the intricacies of the task at hand [12, 13, 14, 15]. 

By using this transformative technique, the Electrocardiogram (ECG) signal is represented more 
accurately, putting the machine on par with a human cardiologist's analytical skills [15]. This methodology 
solves the drawbacks of predetermined features and makes use of deep learning to enable the computer to 
learn the most pertinent features directly from the data. This allows for more subtle pattern identification. 

But it's crucial to recognize that deep learning techniques have a lot of variables, which means large 
datasets are needed for training. For these models to be effective, they need to be exposed to a wide range 
of comprehensive datasets in order for them to generalize and adjust to the many differences that exist in 
ECG signals. Deep learning methods combined with an abundance of data resources could transform ECG 
analysis and open the door to more precise and effective cardiovascular diagnosis [11]. 

Examining the idea of knowledge transfer across different tasks is one way to address the deep 
learning requirement for a large dataset. The ImageNet dataset, in conjunction with state-of-the-art deep 
learning models, has proven invaluable in the transfer of information across a variety of the image 
understanding tasks in domains such as computer vision [16]. Likewise, research in natural language 
processing has shown that significant linguistic knowledge is shared among several sentence classification 
tasks [17]. 

Transfer learning in medical image classification faces significant challenges and occasional failures, 
primarily stemming from domain-specific variations and the complexity of medical datasets. While pre-
trained models excel in general image recognition tasks, they may struggle to adapt to the intricacies of 
medical images due to variations in imaging devices, data acquisition protocols, and inherent 
heterogeneity within medical conditions [5].  

The transferability of knowledge from non-medical domains to the medical field is often hindered by 
the unique characteristics and nuances of medical images. Furthermore, the limited availability of labeled 
medical data for fine-tuning exacerbates these challenges, hindering the model's ability to achieve optimal 
performance on specific medical image classification tasks. Despite the promise of transfer learning, its 
application in the medical domain demands careful consideration and domain-specific adaptations to 
overcome these inherent obstacles [8]. 

In this paper, we use a simpler and lightweight dual-stream network to produce competitive results 
for ECG analysis. The proposed model uses Focal loss along with convolutional neural networks. 

To achieve this, we present a deep neural network architecture with significant capacity for learning 
versatile representations. The network is initially trained on the task of arrhythmia detection, where it is 
reasonable to assume that the model comprehensively learns the shape-related features of the ECG signal. 
The abundance of labeled data available for this task facilitates the training of a network with an extensive 
set of parameters [10]. 
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Moreover, we demonstrate the successful transferability of the signal representation acquired from 
the arrhythmia detection task to the myocardial infarction (MI) prediction task using ECG signals. This 
approach enables us to leverage the deep representations acquired from the initial task to enhance the 
performance of ECG recognition tasks where sufficient information may be lacking for training a deep 
architecture. Our proposed method opens avenues for shared knowledge utilization across various ECG-
related tasks, thereby maximizing the efficiency of deep learning architectures in scenarios where extensive 
data may not be readily accessible for each specific task [12]. 
 
2. Materials and Methods  
2.1. Backgorund 

The application of machine learning for heartbeat classification has emerged as a groundbreaking 
approach in cardiovascular health assessment. Leveraging advanced algorithms, machine learning 
techniques analyze intricate patterns and features within Electrocardiogram (ECG) signals, enabling 
accurate categorization of various heart rhythms and abnormalities. These algorithms go beyond 
traditional methods by autonomously learning and adapting to the complexities of diverse cardiac 
conditions. By employing extensive datasets, machine learning models can discern subtle nuances in ECG 
signals, enhancing their ability to differentiate between normal and abnormal heartbeats. This not only 
facilitates rapid and precise diagnosis but also offers a scalable and efficient solution, potentially reducing 
the reliance on time-consuming manual analysis. Machine learning-based heartbeat classification holds 
great promise in revolutionizing cardiac care, providing clinicians with valuable insights and assisting in 
the early detection of cardiovascular diseases [5].  

Within the realm of machine learning, convolutional neural networks (CNNs) have significantly 
revolutionized the diagnostic procedures related to cardiac health. These advanced neural networks have 
demonstrated remarkable efficacy in the timely and accurate diagnosis of various ailments affecting the 
human heart. The notable strength of CNNs lies in their unparalleled capabilities for feature extraction, 
allowing them to discern intricate patterns and nuances within complex datasets, particularly in the context 
of cardiac signals [15]. 

The hierarchical architecture of convolutional neural networks enables them to automatically learn 
and extract relevant features from input data, making them particularly well-suited for tasks like heartbeat 
classification. The convolutional layers effectively capture local patterns in the data, while the pooling 
layers help retain essential information, contributing to the network's ability to discern subtle variations 
indicative of different cardiac conditions [13]. 

In the context of heart-related applications, the prowess of convolutional neural networks becomes 
evident as they efficiently process and interpret Electrocardiogram (ECG) signals, facilitating rapid and 
accurate diagnostics. The extensive capabilities of CNNs in feature extraction play a pivotal role in 
enhancing the overall performance of these models, making them indispensable tools in the advancement 
of cardiovascular healthcare [32]. 

Following are the contributions of the proposed work: 
• Producing the state-of-the-art for heartbeat classification 
• Using a light-weight network based on convolutional neural networks to produce competitive results 
• Providing a comprehensive analysis for the heartbeat classification 
2.2. Proposed Method 

The presented methodology is structured into four distinct stages, each serving a specific purpose to 
achieve a particular objective. In the initial stage, Stage 1, the focus is on data pre-processing, which 
encompasses crucial tasks such as data cleaning and augmentation. This preparatory phase is essential for 
ensuring the quality and integrity of the dataset, thereby laying a robust foundation for subsequent 
analysis. 

Moving to Stage 2, the emphasis shifts towards model design. This stage involves the formulation of 
a sophisticated and tailored model architecture that aligns with the intricacies of the problem at hand. The 
design phase is crucial as it dictates how well the model can capture and comprehend the underlying 
patterns within the data. 

Stage 3 is dedicated to the training and testing of the model. Here, the model undergoes the process 
of learning from the prepared dataset, adapting its parameters to optimize performance. Rigorous testing 
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is conducted to evaluate the model's generalization and predictive capabilities, ensuring its efficacy in real-
world scenarios [12]. 

The concluding stage, Stage 4, revolves around visualization and interpretation of the produced 
results. In this phase, the outcomes of the model, whether in the form of classifications, predictions, or 
other relevant metrics, are presented in a comprehensible manner. Visualization aids in gaining insights 
into the model's decision-making processes, facilitating a deeper understanding of its performance and 
contributing to the interpretability of the overall methodology. This multi-stage approach ensures a 
comprehensive and systematic methodology, from data preparation to result interpretation, fostering a 
robust and insightful analysis. 

 
Figure 1. Conceptual layout of the proposed network. 

2.2.1. Proposed Network 
In this study, a simple and lightweight network based on convolutional neural networks is used. The 

network has six convolutional layers in pairs of two (see Figure 1). Each couple of convolutional layers is 
followed by a maxpooling and dropout layer to control overfitting/underfitting during the training 
process. Mathematically, the architecture of the network in this study can be expressed as follows:  

Let 𝑋 be the input ECG signal, and 𝑌 be the output representing the classification. The network 
architecture consists of six convolutional layers organized in pairs of two, followed by two dense layers at 
the end. Each pair of convolutional layers is accompanied by a max-pooling layer to downsample the 
features and a dropout layer to mitigate overfitting and underfitting risks during the training process. This 
can be represented as follows: 

 
Conv_1_1→Conv_1_2→MaxPool_1→Dropout_1→ 
Conv_2_1→Conv_2_2→MaxPool_2→Dropout_2→ 
Conv_3_1→Conv_3_2→MaxPool_3→Dropout_3→ 
Conv_4_1→Conv_4_2→MaxPool_4→Dropout_4→ 
Conv_5_1→Conv_5_2→MaxPool_5→Dropout_5→ 
Conv_6_1→Conv_6_2→MaxPool_6→Dropout_5→ 
Flatten→Dense_1→Dropout_7→Dense_2→ 
Output (Y) 

Here, Conv_n_m denotes the m-th convolutional layer in the n-th pair, MaxPool_n denotes the max-
pooling layer following the n-th pair, Dropout_n denotes the dropout layer following the n-th pair, Flatten 
denotes the flattening operation to convert the output of the convolutional layers into a one-dimensional 
vector, Dense_i denotes the i-th dense layer, and Output represents the final classification output. 
2.2.2. Two-fold Focal Loss 

Focal Loss [33] is a loss function designed to address the issue of class imbalance in binary 
classification problems, giving more emphasis to hard-to-classify examples. The mathematical formulation 
of Focal Loss is as follows: 

FL(𝑝!) = −𝛼!	 ∙ (1 − 𝑝!)# 	 ∙ log(𝑝!)																																																										(1) 
Where: 
• 𝑝! is the predicted probability of the true class 
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• 𝛼!	 is a modulating factor that adjusts the weight assigned to each example on its predicted probability. 
It is often defined as 𝛼!	 = 𝛼 for the minority class and 𝛼!	 = 1 − 𝛼	 for the majority class, where 𝛼	 is 
a hyper-parameter. 

• 𝛾 is a tunable focusing parameter that controls the rate at which the loss for well-classified examples 
is down-weighted. Typically, 𝛾 is set to a positive value (for instance 2) to increase the penalty for 
misclassifying easy examples. 
The key characteristics and advantages of Focal Loss include: 

2.2.3. Addressing Class Imbalance 
Focal Loss is specifically designed to handle imbalanced datasets, where one class is much more prevalent 
than the other. It gives more emphasis to the minority class, reducing the impact of the majority class on 
the training process. 
2.2.3.1 Prioritizing Hard Examples 
The focusing parameter 𝛾 enables the model to focus more on hard-to-classify examples, making it robust 
to noisy or ambiguous instances. This helps the model to improve its performance on challenging cases. 
2.2.3.2 Smooth Transition 

As		𝑝!   approaches 1, the term (1 − 𝑝!)#  smoothly reduces the weight assigned to well-classified 
examples, preventing the loss from becoming too small and ensuring a more balanced optimization 
process. 
Focal Loss [32] has found widespread use in object detection tasks, where the imbalance between 

foreground (object) and background classes is common. However, it can be adapted for other binary 
classification scenarios with imbalanced datasets. It is important to experiment with hyper-parameter 
values, especially 𝛼 and𝛾, to find the best configuration for the specific problem at hand. 

We use focal loss in two-folds as under: 
							FL$(𝑝!) = −𝛼!	 ∙ (1 − 𝑝!)#% 	 ∙ log(𝑝!)				 
		FL&(𝑝!) = −𝛼!	 ∙ (1 − 𝑝!)#' ∙ log(𝑝!)										 

				FL!(!(𝑝!) = 	FL$ + FL&																				 
Where: 
• FL$ is the first fold of focal loss 
• FL& is the second fold of the focal loss 
• FL!(! is the total after combining FL$ and FL& 
• 𝛾𝑚 is tunable parameter in the fold FL$ 
• 𝛾𝑛 is the tunable parameter in the fold FL& 
2.2.4. Dataset(s) 

In this research paper, our investigation centers around leveraging data from two prominent sources, 
namely the PhysioNet MIT-BIH Arrhythmia and PTB Diagnostic ECG Databases [18], [19], [20]. Our 
primary aim is to utilize the labeled ECG records from these databases for comprehensive analysis and 
model development. Particularly noteworthy is our demonstration that the knowledge acquired from the 
MIT-BIH database can be effectively transferred to train inference models for the PTB Diagnostic database. 

Figure 2. Conceptual layout of the proposed network 
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Figure 3. Number of samples in each class in the dataset before augmentation 
We continuously used ECG lead II, re-sampled to 125 Hz, as the main input for our models for the 

course of our experiments. The 360 Hz sample rate was used during the initial recording of the MIT-BIH 
dataset, which consists of ECG re-recordings from 47 different participants. At least two cardiologists have 
carefully annotated every heart beat in the data set. We divided the cardiac rhythms in five groups in 
accordance with the Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard 
[22] [37] in order to improve the dataset's comprehension and usefulness (see Figure 2, 3). 

The PTB Diagnostics dataset, on the contrary, includes ECG data of 290 participants, of which 148 
were identified having myocardial infarction (MI), 52 as healthy controls, while the remainder were 
diagnosed with a variety of other diseases. The ECG signals from 12 leads, collected at a frequency of 
1000Hz, are contained in each record in this collection. It is important to remember that we restricted our 
analysis in our study to the MI and healthy control groups within the dataset, and we concentrated mainly 
on ECG lead II. 

By strategically combining these datasets and focusing on key leads and categories, we aim to derive 
meaningful insights into the detection and classification of cardiac abnormalities. This comprehensive 
approach not only facilitates a nuanced understanding of the datasets but also ensures the generalizability 
and robustness of the inference models developed in the course of our research [42] [46]. 

This architecture adheres to the common practice in designing convolutional neural networks 
(CNNs), where pairs of convolutional layers are interleaved with max-pooling and dropout layers to 
extract hierarchical features while mitigating the risk of overfitting or underfitting during training. The 
final dense layers at the end provide a more global understanding of the learned features for making the 
ultimate classification decision. 
2.2.5. A short description of the classes in the dataset 
1. N (Normal beat):  
Represents a regular, normal heartbeat originating from the sinus node in the atria (See Figure 4). 
2. S (Supraventricular premature beat):  
Indicates an early heartbeat originating above the ventricles but not from the sinus node. This might 
include premature atrial contractions (PACs). 
3. V (Premature ventricular contraction):  
Represents an early heartbeat originating from the ventricles. Premature ventricular contractions (PVCs) 
can disrupt the normal heart rhythm. 
4. F (Fusion of ventricular and normal beat): 
Describes a complex beat resulting from the fusion of normal and ventricular beats. This can occur when 
electrical impulses from both the atria and ventricles contribute to a single heartbeat. 
5. Q (Unclassifiable beat):  
Indicates a beat that cannot be confidently categorized into one of the standard classifications. 

These classifications are often used in the analysis of Holter monitors or other long-term ECG 
recordings, where the system automatically categorizes individual heartbeats based on their 
characteristics. It's important to note that while automated systems can provide valuable information, the 
final interpretation should be done by a healthcare professional who considers the entire clinical context. 
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     N     S     V    F Q 

Figure 4. Sample waveform of each classes N, S, V, F, and Q 
2.3. Performance Metric 

Accuracy is often considered a less dependable performance criterion in the context of medical image 
classification. The goal is to classify every case as belonging to the negative class in a circumstance where 
only 5% of the training sample represents the positive class. The model would have a 95% accuracy rate in 
that case. Although a 95% accuracy across the board may sound good, this method ignores the important 
fact that the model incorrectly identified every positive sample. As a result, accuracy is unable to provide 
insightful information about the model's performance in this specific classification job [28] [43]. 

Hence, in addition to accuracy, we incorporate precision recall and f1-score for evaluating 
performance. The performance metrics employed in this analysis are outlined below: 

 

Precicion = 	
TP

TP + FP																																																																																																																																																																	(2) 

Recall = 	
TP

TP + FN																																																																																																																																																																							(3) 

f1 − score = 		
TP

TP + 12 (FP + FN)
																																																																																																																																											(4) 

Accuracy = 		
TP + TN

TP + TN + FP + FN																																																																																																																																								(5) 

 
3. Results 
3.1. Training 

The training and testing processes for the model were conducted on a Personal Desktop Computer 
that runs the Windows 10 operating system. This computer is well-equipped to handle the computational 
demands of the tasks, featuring a robust hardware configuration. Specifically, it boasts a 16 GB RAM, 
powered by an Intel Core i7 64-bit processor, ensuring efficient processing capabilities. Furthermore, the 
computer is enhanced with an NVidia GeForce GTX 1060 GPU, which significantly accelerates parallel 
processing tasks, crucial for complex computations involved in model training and testing. 

To facilitate these experiments, we leveraged the Keras deep learning framework with Tensorflow as 
the backend. This powerful combination of tools provides a flexible and high-performance environment 
for developing, training, and evaluating neural network models. The use of Keras simplifies the 
implementation of complex neural architectures, while Tensorflow, as the backend, ensures optimized 
execution on the available hardware. 

The experimental setup took advantage of a sophisticated Personal Desktop Computer, running 
Windows 10, with impressive specifications including 16 GB RAM, an Intel Core i7 64-bit processor, and 
an NVidia GeForce GTX 1060 GPU. The utilization of Keras with Tensorflow as the backend further 
ensured a streamlined and efficient workflow for training and testing the model. Throughout the training 
process, the model underwent 25 iterations (see Figure 5), with meticulous attention paid to the crucial 
aspect of the learning rate, which was carefully set at 0.0001. The selection of an optimal learning rate 
played a pivotal role in shaping the model's performance. Remarkably, the model exhibited notable 
improvements in both training and validation accuracies, attesting to the effectiveness of the training 
regimen. The manifestation of these advancements was not only evident in accuracy but also discernible 
in the nuanced patterns exhibited by the training and validation loss. These loss curves seamlessly 
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mirrored the underlying trends in the training process, providing valuable insights into the model's 
convergence and generalization capabilities. 

 

 

 

 

 

 
Figure 5. Training accuracy, validation accuracy, training loss, and validation loss 

To further enhance the optimization process, the Adam optimizer was employed, coupled with the 
categorical cross-entropy loss function. This combination was instrumental in fine-tuning the model's 
parameters, contributing to the overall robustness and efficacy of the trained neural network. The 
culmination of these efforts is encapsulated in Figure 5, which visually encapsulates the training results 
through informative curves. This visual representation serves as a comprehensive illustration of the 
model's learning trajectory, affirming the success of the chosen training strategies and parameter 
configurations. 
3.2. Testing 

Testing is unquestionably an important stage in any thorough investigation, serving as an indicator 
for the model's ability to generalize. The proposed approach was put to the test in this thorough evaluation 
by being exposed to data that had never been seen before. This is a reliable way to determine how well the 
model might extrapolate knowledge outside of the training phase. 

Tests on the test subset of the data revealed that the proposed model performed exceptionally well, 
as the detailed breakdown in Table 1 illustrates. The model's ability to comprehend and correctly predict 
outcomes for a variety of situations within the test dataset was confirmed by the good results produced. 

The evaluation highlights outstanding performance on each of the classes. Excellent accuracy was 
obtained for every class, demonstrating the model's ability to predict results accurately in a variety of 
classes. The model's exceptional performance in the Q class, where it outperformed benchmarks, is 
especially remarkable. 

Table 1. Testing results of the proposed model 
Class Precision Recall F1-score Accuracy 

N 0.97 0.98 0.97 0.98 
S 0.93 0.93 0.93 0.95 
V 0.99 0.98 0.98       0.99 
F 0.89 0.94 0.91  0.93 
Q 1.00 0.99 1.00  1.00 

The model's improved precision, recall, and f1-score values unique to this group of classes account 
for the improved Q class results. Together, these measures demonstrate the model's accuracy in 
recognizing instances that belong to the Q class, its recall capacity for a substantial percentage of actual Q 
class instances, and its remarkable trade-off between precision and recall, as demonstrated by the f1-score. 

Table 2. Comparison of the results with state-of-the-art results 
Work Accuracy Precision Recall 

Acharya [33] 0.935 0.928 0.937 
Safdarian [33] 0.94 - - 
Kojur [34] 0.95 0.979  0.933 
Sun  [35] -  0.824  0.926 
Liu [36] 0.944 - - 
Sharma [38] 0.960  0.990  0.930 
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Kachuee [38]  0.959  0.952  0.951 
Hassaballah  [39] 0.964 - - 
Huang  [40] 0.989 0.970 - 
Islam  [41] 0.996 0.976  0.990 
Proposed 0.998 0.990 0.990 

Essentially, the testing stage demonstrated the model's exceptional discriminative powers as well as 
its robustness, as evidenced by the high performance metrics for the Q class. This promising testing result 
bolsters the validity and applicability of the proposed model in a variety of real-world problems. 
3.3. Comparison of the results with state-of-the-art results 

The results of the novel model introduced in this work have been thoroughly compared with a few 
state-of-the-art methods. Since previous research in this area was somewhat comprehensive, it was not 
practical to compare our model to every piece of previous work. As a result, we concentrated on comparing 
our model to the most relevant studies that made use of the same datasets that we used in our research. 

The comparative study, as shown in Table 2, provides a clear picture of the effectiveness of the 
proposed strategy. Interestingly, results show how well our model performs in comparison to the selected 
pertinent studies. Actually, we outperform a large percentage of the existing approaches in the domain 
with our proposed approach. This significant accomplishment highlights our proposed model's efficacy 
and resilience in tackling the challenges that are present in the heartbeat classification using ECG.  
 
4. Discussion 

This study introduces a novel approach to heartbeat classification and analysis, leveraging deep 
learning methodologies. The methodology proposed in this research employs a lightweight model 
grounded in convolutional neural networks, coupled with twofold focal loss. Through this innovative 
framework, the study aims to address the common challenges encountered when employing transfer 
learning techniques. Transfer learning, although widely utilized, is not devoid of limitations, including 
domain mismatch, limited availability of pre-trained models, task-specific feature extraction difficulties, 
fine-tuning complexities, constraints in data augmentation, interpretability concerns, ethical and 
regulatory considerations, as well as issues related to model bias and generalization. By deviating from the 
conventional use of transfer learning, this study endeavors to surmount these challenges and offer superior 
results [12]. 

It is well-established that transfer learning approaches confront various hurdles, primarily due to 
discrepancies between the source and target domains, and the scarcity of pre-trained models tailored 
specifically to the medical imaging domain. Moreover, the task-specific features crucial for accurate 
classification may not always align with those learned by pre-trained models, necessitating extensive fine-
tuning efforts. Additionally, limitations in data augmentation techniques pose further challenges, 
potentially compromising the integrity of medical image data. The interpretability of transfer learning 
models in clinical contexts is also a pressing concern, alongside ethical and regulatory considerations, 
particularly regarding patient privacy and compliance with medical standards. Furthermore, inherent 
biases within pre-trained models can impede the generalization of transfer learning approaches across 
diverse patient populations and healthcare settings [41]. 

In light of these challenges, the presented study proposes an alternative approach that circumvents 
the reliance on transfer learning methodologies. By leveraging a deep convolutional neural network 
architecture in conjunction with twofold focal loss, the study achieves state-of-the-art results in heartbeat 
classification without resorting to transfer learning. This departure from conventional methods 
underscores the potential for novel techniques to outperform established methodologies, paving the way 
for more robust and effective solutions in medical image analysis. Through rigorous experimentation and 
validation using benchmark datasets, the proposed methodology demonstrates its efficacy in accurately 
classifying various arrhythmias, thereby offering a promising avenue for advancing the field of 
cardiovascular diagnostics and treatment. 

 
5. Conclusions 

This paper introduces an innovative method tailored for the precise classification of heartbeats within 
electrocardiogram (ECG) signals. Embracing simplicity without compromising on efficacy, the proposed 
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methodology harnesses the power of convolutional neural networks (CNNs) in a straightforward 
architecture, augmented by a two-fold focal loss mechanism. This streamlined design not only delivers 
exceptional performance but also marks a departure from the reliance on intricate pre-trained models or 
excessively large deep learning networks. The efficacy of the proposed approach is underscored by its 
ability to achieve state-of-the-art results in heartbeat classification tasks. By leveraging CNNs, renowned 
for their prowess in capturing spatial hierarchies in data, the model adeptly discerns subtle patterns within 
ECG signals, enabling accurate classification of heartbeats with remarkable precision. Moreover, the 
incorporation of the two-fold focal loss mechanism further enhances the model's robustness, enabling it to 
effectively handle imbalanced datasets and prioritize challenging instances during training. Furthermore, 
the success of the proposed methodology underscores the potential for advancements in cardiac signal 
analysis through judicious application of deep learning techniques. By demonstrating the feasibility of 
achieving state-of-the-art results with a simplified architecture, this paper sets a precedent for future 
research endeavors aimed at improving cardiac diagnostics and patient care. Ultimately, the presented 
methodology holds promise for revolutionizing the field of cardiovascular health by providing clinicians 
with efficient and accurate tools for ECG signal interpretation and diagnosis. 
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