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Abstract: Skin cancer is a deadly type of cancer that is responsible for millions of fatalities annually 
across the globe. This malignant cancer occurred due to the proliferation of abnormal epidermal 
cells, which subsequently spread to adjacent tissues and spread to other organs and tissues through 
the lymph nodes. Changes in lifestyle and sun-seeking behaviors have contributed to the increase 
in the incidence of skin cancer. It is critical to accurately identify and classify skin cancer to prevent 
the serious effects that result from delaying detection and treatment. This research paper presents a 
newly developed deep learning model that makes use of two advanced artificial intelligence tech-
niques, Xception and ResNet101. This method attains an extraordinarily high degree of accuracy by 
using the special advantages of two strong networks. The Xception-ResNet101 (X_R101) model is 
capable of differentiating specific categories of skin cancers, such as melanoma (Mel), melanocytic 
nevus (Mn), basal cell carcinoma (bcc), squamous cell carcinoma (Scc), benign keratosis (Bk), Actinic 
keratosis (Ak), Dermatofibroma (Df) and Vascular lesion (Vl). The implementation of border-
line SMOTE improves performance substantially. A comparison is performed between the pro-
posed methodology and four benchmark classifiers: MobileNetV2 (BM3), DenseNet201 (BM4), In-
ceptionV3 (BM1), and ResNet50 (BM2) and state-of-the-art classifiers. To evaluate performance of 
the proposed methodology, three publicly available datasets (PH2, DermPK and HAM10000) are 
utilized. The X_R101 model attains a prediction accuracy of 98.21%. The method's accuracy and ef-
fectiveness provide benefits to dermatologists and other healthcare practitioners in terms of timely 
identification of skin cancer. 
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1. Introduction 

Skin cancer is one of the deadliest types of cancer due to its high mortality rate. When the skin is 
exposed to a significant amount of ultraviolet (UV) radiation, the melanocyte cells present inside the skin 
undergo uncontrolled proliferation and this uncontrolled dispersion damages the healthy tissues [1]. The 
anomalous cells propagate throughout the lymph nodes, leading to the deterioration of neighboring tissues 
and the emergence of skin cancer [2]. A large number of the American population is suffering from this 
ailment which makes it a prominent public health issue. On an average about five million cases of skin 
cancer are diagnosed every year in the United States. [3]. The WHO reports that about 33% of all the deaths 
due to cancer are occurred by the skin cancer. Furthermore, there is a sharp rise in the number of skin 
cancer cases in the recent years [4].  A huge increase in the cases of skin cancer occur and the yearly mor-
tality rate from skin cancer almost doubled since the 1990s [5]. Melanoma, a type of a skin cancer is the 
most dangerous for the human beings. Melanoma, considered as the highly malignant form of skin cancer, 
due to its high mortality. Annually, a very significant mortality rate from skin cancer has been linked with 
this particular type of melanoma occurring on the skin [6]. Skin melanoma comprises both benign and also 
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malignant skin cancers [7]. Melanoma (Mel), melanocytic nevus (Mn), basal cell carcinoma (bcc), squamous 
cell carcinoma (Scc), benign keratosis (Bk), Actinic keratosis (Ak), Vascular lesion (Vl) and Dermatofibroma 
(Df) are classified as non-melanoma skin malignancies [8]. In the USA, the second most commonly diag-
nosed kind of skin cancer is the basal cell carcinoma – 2.3 million of new cases of this type of cancer are 
reported annually. In most cases, they appear after melanoma and basal cell carcinoma have already ap-
peared [8-9]. One of the leading causes of death in this type of skin cancer is its unusual detectability, 
mainly in cases of melanoma, a type of skin cancer which is curable only in the first stage [9]. The new 
cases of skin cancer and considering the fact that this problem is increasingly frequent, there is the need of 
more and more trained specialists in the diagnosis of this disease [10]. On the other hand, the present sup-
ply of such professionals seems to be embarrassingly inadequate [7]. Practically, there were 9,600 derma-
tologists who serviced the yearly number of 323 million people in the United States in 2018 [6]. Considering 
the scarcity of specialists responsible for providing accurate and timely diagnosis in the immediate term, 
innovative methodologies must be adopted [11]. 

Medical imaging is in the field for quite some time now and is proving beneficial to the experts. Med-
ical imaging specialists have developed computer-aided detection (CAD) methodologies for a diverse 
range of medical conditions, encompassing skin cancer, foot ulcers, brain tumors, COVID-19 and several 
other ailments [12-15]. The essential CAD approach consists of four key components: input photo prepro-
cessing, detection of infected area, feature extraction, and classification [16]. In the case of skin cancer, the 
validation of a dermatologist's manual diagnosis can be achieved by employing computer approaches to 
gain an additional assessment [17]. Numerous diagnostic approaches employ the ABCD rule, a framework 
that takes into account the attributes of symmetry, border irregularity, color variation, and dermatoscopic 
characteristics [18]. Skin cancer is frequently diagnosed by dermatologists utilizing these specific criteria. 
The presence of noise, low contrast, and irregular borders pose challenges in the recognition of melanoma 
photos [19]. According to the Melanoma Research Foundation, the reliability of the ABCD criteria for pho-
tograph-based melanoma diagnosis is questionable. Furthermore, an expert dermatologist is needed to 
perform these procedures otherwise an excessive number of false positive and false negative findings occur 
[20]. The aforementioned constraints highlight the necessity of exploring and advancing efficient auto-
mated skin cancer detection techniques for both inexperienced and experienced physicians. As a result, 
there has been an evolution of automatic approaches for detecting melanomas [21]. Computerized screen-
ing methods that utilize data extraction from dermoscopy images have proven to be beneficial in enhanc-
ing physicians' diagnostic capabilities [22]. There is an increasing trend in the utilization of various deep 
learning techniques such as CNN (convolutional neural network) by automated systems to independently 
extract data from input images [23]. Deep learning techniques are proving very effective in identifying 
diseases and categorizing images. Due to this the utilization of artificial intelligence (AI) models with en-
hanced diagnostic capabilities is being implemented in the domain of medical imaging [24].  

In Section 2, an extensive examination is conducted on various deep learning and machine learning 
models that have been specifically designed for the accurate diagnosis of skin cancer and the identification 
of its subtypes. This research presents a unique deep-learning model named X_R101 that concatenates 
Xception and ResNet101 for feature extraction and multiclassification of skin cancer through the utilization 
of dermoscopy images. Furthermore, the utilization of the Borderline SMOTE technique effectively tackles 
the issue of class imbalance encountered in multiclassification tasks. The suggested model demonstrates a 
high level of efficacy in accurately classifying different forms of skin cancer in the early stages of the illness. 
This ultimately makes the lives of the healthcare professionals way easier since they can immediately re-
spond by applying the necessary treatment procedures. The methodology applied in this research is cen-
tered on the application of the three open source PH2 [25], DermPK [26] and HAM10000 [27] datasets are 
combine together for the training and testing. The results demonstrated the supremacy of the proposed 
method above the available in marketplace approach in term of its detection accuracy, were obtained. 

 The following are the primary contributions of the study. 
• An innovative and highly effective deep learning architecture called X_R101 is developed by fusing 

the Xception and ResNet101 networks.  
• The proposed network classifies the dermoscopy images into eight distinct classes: Mel, Mn, Bcc, Scc, 

Vl, Ak, Df and Bk.  
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• The proposed X_101 model has the ability to efficiently detect skin cancer by employing dermoscopy 
images. This model exhibits exceptional effectiveness in real-life situations. Its efficacy has been as-
sessed utilizing combined data consist of PH2, DermPk and HAM10000 datasets, which are available 
to the public.  
Furthermore, the novel X-R101 model integrates an efficient computational framework, in addition to 
gathering features from two renowned networks, Xception and ResNet101. The network undergoing 
assessment demonstrates exceptional performance on a dataset, achieving a maximal accuracy rate of 
98.21%.  

• After performing an McNemar statistical test, it is apparent that the X_R101 model exhibits a higher 
level of performance in comparison to the remaining models.  

 The main points of the article are briefly summarized as follows. In the following section 2, a literature 
review is discussed on the ML/DL algorithms for skin cancer detection. The current methodology utilized 
a combined dataset consist of PH2, DermPk & HAM10000 dataset that is described in greater detail in 
Section 3. In Section 4, the experimental configuration and results are described in detail. The discussions 
are provided in Section 5. In Section 6, the conclusion and potential limitations are discussed. 
 
2. Literature Review  

Depletion of the ozone layer over time has been recognized as a factor in the increase in the incidence 
of skin cancer. As a result, researchers have been actively developing automated systems to examine der-
moscopic images with the aim of identifying indicators of skin cancer. The methods utilized are ML, 
DL and computer vision-derived. In the section that follows, the methodologies proposed in the relevant 
research are discussed as shown in Table 1. 

Kaseem et al [28]. proposes a method for properly categorizing skin lesions. Using transfer learning 
and a pre-trained GoogleNet model, the proposed model was constructed. The model's starting parameters 
will likely shift as a result of the training process. The widely known public challenge dataset, ISIC 2019, 
is used to test the suggested approach. Accurate diagnosis of 8 different classes of skin cancers including 
melanomas, melanocytic nevi, basal cell carcinomas, actinic keratoses, benign keratoses, dermatofibromas, 
vascular lesions, and squamous cell carcinomas was made possible by the proposed model. Precision was 
80%, sensitivity was 79.82%, specificity was 97%, and accuracy in classifying was 94.92%. The model can 
identify photographs that do not fall inside any of the predefined eight classifications. In such cases, these 
images are categorized as unknown images. 

Abbas et al. [29] conducted a study in which they compared dermoscopy and deep learning for mel-
anoma classification. This paper introduces a deep-learning skin cancer categorization model. Yonsei Uni-
versity Health System's dermoscopy images database was used in their investigation. Image processing 
and data augmentation have created a reliable automated AM detection system. This study uses a seven-
layer deep convolutional network. The class started without weights or settings. Their model was evalu-
ated using transfer learning in this study. After changes, AlexNet and ResNet-18 were fine-tuned and 
trained on the same dataset. The proposed technique improved benign nevi and AM accuracy by 90%. 
They achieved over 97% accuracy using transfer learning, which is equivalent to cutting-edge approaches. 
Their algorithm correctly recognized skin cancer instances after a comprehensive investigation. Dermatol-
ogists may apply the suggested technique to make data-supported clinical choices on early A.M. detection, 
according to our research. 

Reis et al. [30] introduced InSiNet, a CNN that uses deep learning to distinguish benign as well as 
malignant tumors. The technique's efficacy is tested in a controlled environment utilizing images from the 
International Skin Imaging Collaboration's 2018–2020 investigations. The suggested technique was com-
pared to GoogleNet, DenseNet-201, ResNet152V2, EfficientNetB0, RBF-support vector machine, logistic 
regression, and random forest for computational speed and accuracy. The InSiNet architecture outper-
formed other architectures on the 2018–2020 ISIC datasets. InSiNet achieved 94.59%, 91.89%, and 90.54% 
accuracy for ISIC 2018, 2019, and 2020 datasets, respectively. 

Monika et al [31] in their research aim to identify and classify skin cancer using machine learning and 
image processing. Pre-processing includes dermoscopy images. After removing unwanted hair on the skin 
lesion with a dull razor, a Gaussian filter smooths the image. Lesion boundaries are kept, and median 
filters remove noise. Because color contributes to cancer examination, the classification approach uses 
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color-based k-means clustering. GLCM and ABCD are used to derive texture traits. The clinical study uses 
ISIC 2019 Challenge dataset comprising eight dermoscopic image types. The Multi-class Support Vector 
Machine (MSVM) was categorized with 96.25 percent accuracy. 

Ibraheem et al [32]. enhanced the lesion images by employing the contrast-limited adaptive histogram 
equalization (CLAHE) method. In this, threshold equalization and bilinear interpolation were the two cru-
cial elements. On top of that, a process based on pixels was employed to divide the skin lesions and reclaim 
their inherent characteristics. The categorizations ranged from 0 (which designated a background item) to 
2 (which denoted melanoma), with 1 (which denoted a benign tumor) as the lowest classification. Gradient 
Boosted Tree (GBT) attained 97.5 percent accuracy. 

From visual features, Rehman et al. [33] used convolutional neural networks (CNN) to detect malig-
nancy. The dataset utilized in the International Skin Collaboration (ISIC) 2016 study consisted of instruc-
tional photographs possessing a size of 1024 by 767 pixels These photos came in three different varieties; 
melanoma was labeled as malignant, nevus and seborrhea keratosis as benign. This study employed a 
convolutional neural network (CNN) to be represented by Rectified Linear Units (ReLU) for image cate-
gorization. In addition, the extended Gaussian distribution is also used in the context of image segmenta-
tion. Accuracy, specificity, and sensitivity were metrics that showed the effectiveness of the model. The 
approach suggested has a 98.32% chance of success, which does not have any independently verified data 
yet. Data augmentation technique was used in the article by Shetty et al [34]. The adopted approach of the 
k-fold cross-validation tested model makes a better model more robust. Convolutional Neural Network 
(CNN) showed higher accuracy in the study results than other machine learning algorithms. When we 
employed CNN model, the proposed proposal gave the highest accuracy score (95.18%). 
Agbenieme et al. [35] used Convolutional Neural Networks (CNNs) to classify seven types of cutaneous 
carcinoma into DenseNet201. Several pre-processing and analysis steps were done before categorizing the 
given image samples of skin lesions. We implemented tests of both the ISIC 2017 and HAM10000 datasets 
to estimate the accuracy of the adopted classification system. The proposed method accuracy of the test is 
86.1% and the training accuracy is 99.12%. Naeem et al [36] developed an extraordinary model called 
SCDNet used to distinguish among the different categories of skin cancer whereby a combination of Vgg16 
and CNN is applied. When considering the task of classifying skin cancer, the SCDNet showed a classifi-
cation precision of 96.91%. 

Based on a study that was run which looked at four different deep learning techniques of Xception, 
ResNet50, CNN and RNN by Singh et al.[37], it is necessary to discover the best trusted method for sickness 
predictions. This study was performed on dataset HAM10000. As the research shows, the CNN, RNN, 
ResNet50, and Xception methods are more efficient than the traditional methods with accuracy rates of 
72%, 69%, 73%, and 93% well. 

 
Table 1. Literature Review 

Method Dataset Accuracy Year Ref 
Transfer Learning 

+ 
Google net 

 
ISIC 2019 

 
94.92% 

 
2020 

 
[28] 

AlexNet 
+ 

ResNet-18 

Yonsei University 
Health System's 
dermoscopy im-

ages database 

 
97.00 

 
2021 

 
[29] 

 
InSiNe 

 
ISIC 2018 
ISIC 2019 
ISIC 2020 

 
94.90 
91.89 
90.54 

 
2022 

 
 

 
[30] 

MSVM ISIC2019 96.25 2020 [31] 

GBT ISIC2019 97.50 2020 [32] 

CNN based model ISIC 2016 98.32 2018 [33] 
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CNN HAM10000 95.18 2022 [34] 

DenseNet201 ISIC 2017 
+ 

HAM10000 

86.10 2022 [35] 

SCDNet ISIC 2019 96.91 2022 [36] 

CNN 
RNN 

ResNet50 
Xception 

 
 

HAM10000 

72.00 
69.00 
73.00 
93.00 

 
2022 

 
[37] 

 
3. Proposed Methodology 

This section explores the extensive workflow of the system under consideration. The Figure 1 illus-
trates the proposed model and provides a comprehensive sequence from dataset collection to experimental 
results.  

 
Figure 1. Proposed Methodology 

3.1 DataSet 
3.1.1. Dataset Description 

The model is trained by utilizing publicly available PH2[25], DermPk[26] and HAM10000 [27] da-
tasets. These datasets comprise of diverse and accurately curated collection of high-quality skin lesion im-
ages, replete with rich metadata, which helps in skin cancer classification and clinical decision support. 
The combined dataset encompasses major classes including melanoma, melanocytic nevi, basal cell carci-
noma, actinic keratosis, squamous cell carcinoma, dermatofibroma, vascular lesion, and seborrheic kera-
tosis as describe in table 2. These images, empower researchers to explore the intricacies of dermatological 
conditions as shown in Figure 2. 
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This paper uses these datasets in advancing dermatological research and machine learning model 
creation. The images included in this dataset proved to be very valuable in training and validating the 
proposed model. 

.  
Figure 2. Sample Images from Dataset 

 
Table 2. Image Distribution of Datasets 

Class PH2 DermPK HAM10000 Total Number 
of Images 

Melanoma 40 30 1113 1183 

Melanocytic ne-
vus 

- 35 6705 6740 

Basal cell carci-
noma 

- 40 514 554 

Squamous cell 
carcinoma 

- 29 - 29 

Benign keratosis 80 15 1099 1194 
Actinic keratosis - - 327 327 
Dermatofibroma - - 115 115 
Vascular lesion - - 142 142 

3.1.2. Balancing the dataset 
The BODERLINE-SMOTE methodology is a variant of the SMOTE method proposed by Han et al. 

[38] The method initiates by categorizing the observations that pertain to the minority class. Given the 
premise that the dominant class encompasses the entirety of the environment. In instances of this nature, 
any observation that arises from the minority class will be categorized as noise and will not be utilized for 
the purpose of generating synthetic data, since it will be considered inconsequential. Furthermore, the pro-
cess involves the discernment of a limited set of particular regions referred to as "border spots," which are 
characterized by their positioning amidst the dominant and marginalized communities. The sample tech-
nique subsequently concentrates exclusively on the aforementioned chosen sites. Consequently, the Bor-
derline-SMOTE technique is employed to augment the quantity of occurrences in the dataset photographs. 
The present study utilizes the seven-category classification system of the HAM10000, three categories of 
Ph2 and Six categories of DermPK. The aforementioned classifications include melanoma, melanocytic ne-
vus, basal cell carcinoma, actinic keratosis, squamous cell carcinoma, dermo fibroma, vascular lesion, and 
seborrheic keratosis. Following a subsequent step known as up-sampling, a dataset is augmented by the 
addition of a total of (no. of images before applying smote) samples. Upon the successful implementation 
of the Borderline-SMOTE technique, the quantity of photographs within each class experienced a notable 
increase, resulting in a total count of (no. of images after applying smote) images as shown in table 3. 
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Table 3. Image Distribution after Bl-SMOTE 
Class Selected Images Images after Bl-SMOTE 

Melanoma 460 1200 

Melanocytic nevus 500 1200 

Basal cell carcinoma 400 1200 

Squamous cell carcinoma 29 1200 

Benign keratosis 400 1200 
Actinic keratosis 327 1200 
Dermatofibroma 115 1200 
Vascular lesion 142 1200 

 
3.1.3. Data Preprocessing (Gaussian filtering) 
To enhance image quality and reduce noise as shown in figure 3, we harnessed the power of 2D Gaussian 
filters. While these filters imposed considerable computational demands, they also ushered in a novel 
realm for research exploration. In this sub-stage, Gaussian operators took on the role of convolutional 
operators, advocating the adoption of convolution for efficient smoothing [39].  

𝐺𝑢𝑠!"(") =
1

√2πσ
𝑒#(

%$
&'$)																																																																																																																																																													(1) 

To accomplish localization, the smoothing procedure employs a substantial filter that operates in both 
the frequency and spatial domains. The aforementioned depiction is also employed to operationalize the 
concept of uncertainty. 

						∆i∆µ ≥ 	
1
2,																																																																																																																																																																																(2) 

The mathematical representation of the two-dimensional operator for a Gaussian filter is provided below. 

𝐺𝑢𝑠&"(",			') =
1

2πσ& 𝑒
#)%

$*+$
&'$ ,																																																																																																																																																								(3) 

Within the given context, the standard deviation of a Gaussian function is denoted by the symbol sigma 
(σ). The highest point of the value corresponds to the point at which the smoothing effect is most pro-
nounced. The positional information of the image, denoted by the Cartesian coordinates 𝑖 and  𝑗, can be 
utilized for the purpose of determining the dimensions of the window. Moreover, are also resized and 
normalized to achieve better classification results. 

Figure 3. Images after Preprocessing 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 328-0602/2024   

3.1.4. Xception Net 
 In the deep Xception Network model, pointwise convolutional layers are utilized to generate 
additional inception layers followed by the convolutional layers. When the Xception framework is 
implemented, the depthwise separable convolutions of InceptionV3 are modified. Spatial convolution is 
accomplished through the utilization of depthwise convolution channels that possess the dimensions 𝑎 × 
𝑎. In order to perform pointwise convolution, each dimension must be transformed individually. A 
convolutional operation is implemented by Xception to merge features in both the depthwise and 
pointwise directions. In contrast to Xception, Inception applies non-linear activation after convolution [40].. 
Xception as a whole utilizes a cumulative total of 23 million parameters distributed throughout in its 71 
layers. 
3.1.5. Resnet101 
 A wide range of research results has been compiled relating the versatility of Residual Networks 
(ResNet) in the domain of computer vision [41, 42]. It has been established that this network is capable of 
training with a maximum depth of one thousand layers [43]. The ResNet 101 architecture enables 
uninterrupted information transmission between layers by employing the correlation principle among 
identical connections [44]. The CNN model operates at a relatively swift rate and utilizes a reduced number 
of parameters. By effectively addressing vanishing gradients, this convolutional neural network (CNN) 
structure attains enhanced accuracy and quicker convergence. For the purpose of streamlining this 
network model, shortcut connections are employed instead of the convolutional layers block approach . 
When the input and output dimensions are identical, the shortcut connections method, which was recently 
introduced, is utilized. When confronted with situations that involve multiple dimensions, there are two 
viable methodologies to choose from. In order to enable shortcut mappings, identity mapping first adds 
zeros to the dimensional increment; as a result, there will be no parameter increase. The second 
methodology achieves input and output dimension alignment through the utilization of a projection 
shortcut in conjunction with 1.0 convolutional filters. The proposed architecture's increased complexity 
and ResNet-101's dependence on Batch Normalization layer execution are the two most frequent 
implementation-related issues. The following equation serves as a fundamental component in this model:  
 
𝐾 = 𝐹(𝐽, {𝑀.}) + 𝐽																																																																																																																																																																					(4) 

	
 J and K are the input and output vectors where 𝐹(𝐽, {𝑀.})	is the mapping function to be learned 
whereas J + K are performed by the shortcut connections. 

The pre-trained model was utilized to perform image identification. This model incorporates 104 
batch normalization layers, 100 ReLU layers, 104 convolutional layers, SoftMax, entirely connected, 
average pooling, and max polling, in addition to the 33 additional layers specified below. The model was 
provided with an image that had the subsequent dimensions: 224 x 224 x 3. The parameters utilized by the 
max-polling operation of this model are padding (0,1,0, and 1), pool size (3,3) and stride (2,2). Without 
padding, the standard pooling operation utilizes a (7,7) pool and stride size. After the network training 
procedure is complete, the acquired features are obtained through the utilization of the PH2 and DermPK 
datasets. A grand total of one thousand features were chosen from the 'fclayer' layer, whereas 2048 features 
were obtained from the 'pool5' layer.  
3.2 Proposed method: Concatenated X_R101 

The research paper presents the concatenated X_R101 model, which demonstrates efficacy and accu-
racy in the classification of a wide variety of skin lesions named basal cell carcinomas, vascular lesions, 
melanomas, melanocytic nevi, dermatofibromas, actinic keratoses, and intraepithelial carcinomas. The 
graphical structure of the concatenated network is depicted in Figure 8. A noticeable improvement in the 
precision of predictions generated by the model is observed. The unified X_R101 achieves classification 
and standard feature extraction within a single frame by manipulating the quantity of concealed layers. 
The pre-processed skin photos from the datasets are resized to the resolution of 224 by 224 pixels. In the 
final phase of feature extraction, feature maps with the 4 × 4 × 2048 dimensions are produced by Xception 
and ResNet101. The feature maps under consideration are derived from the input image. Based on the 
similarity observed in the feature maps generated by both models, it is viable to merge them in a way that 
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optimizes the utilization of the inception and residual layers, resulting in semantic features of higher qual-
ity. In order to construct a concatenated deep network, the classifier is utilized in conjunction with the 
features extracted from Xception and ResNet101 via the convolutional layer. In addition to the convolu-
tional layer with 1024 filters, a 1 x 1 kernel is also incorporated. The function for activation does not exist. 
By utilizing the convolutional layer, the network is capable of efficiently extracting significant semantic 
features from the aggregated data across all channels. The core element of the proposed framework com-
prises an improved system for predicting skin cancer that is characterized by its uncomplicated architec-
ture. By concatenating the initial X_R101 layer, the dimensions of the input image are reduced to 128 by 
128 pixels. Eight unique classification categories are generated as a result of the operation. The activation 
functions Softmax and ReLu were applied to the model's output in order to populate the hidden layer. 
During the entirety of the training process, a 20% withdrawal rate was mandatory to prevent the occur-
rence of overfitting. 
3.3 Performance Metrics 

This procedure of the model evaluation was based on several metrics, including F1-score, recall, ac-
curacy, and precision. The success or failure were tested by using the true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN). The quantities of photographs that were mistakenly 
identified as other malignant images (FP), FN which are normal images misclassified as some disease, and 
the TN which are correctly labelled as some disease due to normal images and images that are correctly 
identify is donated as (TP) . The precision is defined as the ratio of the correct instances to the total number 
of the set of images that are ranked. The mathematical forms of these measures are as follows: 

 
Accuracy =  ? /0*/1

/0*21*20*/0
@																																																																																																																																												(5) 

 
Precision = ? /0

/0*20
@																																																																																																																																																												(6) 

 
Recall = ? /0

/0*21
@																																																																																																																																																																		(7) 

 
F1-Score =  2 ∗ ?034"45%6.∗84"9::

034"45%6.*84"9::
@																																																																																																																																			(8) 

4. Experimentation Results 
 In the section that follows, we assess X_R101 to the most recent CNN classifiers. This section dis-

cusses the distinctions among the suggested X_R101 and the four well-known CNN networks.  
4.1. Experimental Setup and Hyper-Parameter’s Fine Tuning 

The development of the suggested model was performed utilizing version 2.12.0 of TensorFlow (TF). 
TF version 1.8 was employed for the construction of the four baseline CNN networks (BM1, BM2, BM3, 
BM4). Using Python 3.10.1, methods that are not limited to convolutional networks were developed. The 
study was performed on an individual computer operating on the Windows 10 operating system, featuring 
32 GB of RAM and a 12 GB NVIDIA GPU. A comprehensive summary of the critical hyperparameters that 
regulate the functioning of the X_R101 architecture is provided in Table 4. 

 
Table 4. List of the X_R101 Architecture's implemented hyper-parameters. 

Parameter Name Type 

Learning Rate 0.001 

Batch size 32 

Call back ReduceLROnPlateau 

Epochs 30 

Optimizer RMSprop 
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 The X_R101 model exhibits the capability of differentiating among six distinct types of skin cancer by 
integrating dermoscopy images. In order to optimize the X_R101 model, adjustments were made to its 
hyper-parameters, namely the learning rate, epoch and batch size, through the implementation of grid 
search. To optimize the development process of the Proposed X_R101, a batch size of 32 and a maximum 
of 30 testing epochs were implemented. Utilizing the stochastic gradient descent (SGD) optimizer, the 
learning rates (LR) for the four CNN networks and the proposed X_R101 were initially set to 0.05. After 
twenty unsuccessful iterations of training, a reduction of 0.1 was made to the LR parameter. Given the 
potential for substantial consequences that could arise from overfitting the input data, this measure was 
taken to protect the X_R101 model and four CNN networks. 
4.2. Accuracy of the Proposed X_R101 in Comparison to Other Classifiers 

Our model's accuracy is assessed in terms of the proportion of correct predictions it produces.  
Upon applying the BL-SMOTE techniques to the dataset, X_R101 is contrasted with four additional widely 
recognized CNN networks. The results obtained by applying the BL SMOTE method to the proposed 
model were exceptional. The accuracies achieved for the X_R101 models, comprising four baseline models 
BM1, BM2, BM3 and BM4 are detailed in Table 5. The corresponding values were 92.14%, 93.95%, 95.48%, 
96.67%, 92.98% and 98.21% for BM1, BM2, BM3, BM4, X_R101 and X_R101 With BL SMOTE. The primary 
differentiation of the proposed X_R101 is accomplished by employing the BL SMOTE, as illustrated in 
Figure 4.  
 

Table 5. Evaluation of proposed X_R101 with four CNN networks. 
Classifiers Accuracy Precision Recall F1-score AUC 

BM1 92.14% 92.26% 92.20% 92.23% 98.16% 

BM3 93.95% 93.93% 93.89% 93.91% 98.29% 

BM3 95.48% 95.60% 95.70% 95.65% 98.34% 

BM4 96.67% 96.72% 96.79% 96.73% 98.40% 

Proposed X_R101 (Without BL-
SMOTE) 

92.98% 93.10% 93.01% 93.05% 96.93% 

Proposed X_R101 (With BL-
SMOTE) 

98.21% 98.41 98.33% 98.37% 99.29% 

Activation function 
(Hidden layer) 

ReLU 

Activation function 
(Output layer)  

SoftMax 
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Figure 4. Comparison of Proposed X_R101 to baseline networks using accuracy (a) BM1 (b) BM2 (c) 

BM3 (d) BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using Borderline 
SMOTE Tomek. 

4.3. Loss of the Proposed X_R101 in Comparison to Other Classifiers 
The loss function is utilized to calculate the amount of discrepancy that exists between the predicted 

and observed values. In this investigation, the magnitude of the loss was determined by employing a 
categorical cross-entropy methodology. The results became considerably more apparent subsequent to the 
construction of the X_R101 model utilizing upsampled images. The proposed X_R101 models produced 
loss values of 0.5101 and 0.8010 respectively, when assessed with and without BL SMOTE TOMEK. The 
loss values corresponding to BM1, BM2, BM3, and BM4 are as follows: 0.6819, 0.9829, 0.6534 and 0.6040 
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respectively. As shown in Figure 5, BL SMOTE has significantly reduced the loss value of the X_R101 
system under consideration.  

 

Figure 5. Contrasting of Proposed X_R101 to baseline networks using loss values (a) BM1 (b) BM2 
(c) BM3 (d) BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using Borderline 

SMOTE Tomek. 
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4.4. F1-score of the Proposed X_R101 in Contrast to Baseline Networks 
The proposed X_R101 model standardizes the input samples by using the one-hot encoder is 

that integrates classified data into variables. In order to address the issue of an imbalanced dataset, the 
methods of oversampling, BL-SMOTE is utilized to bring the dataset into balance. The utilisation of BL 
SMOTE substantially enhances the F1-score of the proposed X_R101, as illustrated in Figure 6. In the 
presence and absence and BL-SMOTE, the F1 scores for the proposed X_R101 models were 98.37% and 
93.05% respectively. Conversely, the F1-scores of BM1, BM2, BM3, and BM4 were as follows: 92.23%, 
93.91%, 95.65% and 96.73% respectively. The principal differentiation introduced by the incorporation of 
BL SMOTE into the proposed X_R101 is illustrated in Figure 6.  

Figure 6. Evaluation of Proposed X_R101 to baseline networks using F1-score (a) BM1 (b) BM2 (c) 
BM3 (d) BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using Borderline 

SMOTE Tomek. 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 328-0602/2024   

4.5. Recall of the Proposed X_R101 in Comparison with Other Classifiers 
The recall criterion was incorporated in order to assess the model's ability to accurately identify 

positive samples. Undoubtedly, the higher recall values resulted in the acquisition of a greater quantity of 
positive samples. The outcomes of a recall curve comparison between the proposed X_R101 and four 
baseline models are depicted in Figure 7. The recall values for the X_R101 model with and with BL Smote, 
BM1, BM2, BM3, and BM4 derived from the gathered data were as follows: 98.33%, 93.01%, 92.20%, 93.89%, 
95.70% and 96.79%%. After this explanation, the proposed method promptly established its remarkable 
efficiency.  

 
Figure 7. Comparison of Proposed X_R101 to baseline networks using recall value (a) BM1 (b) BM2 

(c) BM3 (d) BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using Borderline 
SMOTE Tomek. 

4.6. AUC of the Proposed X_R101 in Contrast to Baseline Networks 
We evaluate our proposed model against four other well-known CNN networks by analyzing the 

datasets before and after SMOTE TOMEK and BL-SMOTE integration. The utilization of BL SMOTE 
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significantly improves the area under the curve (AUC) of the proposed X_R101, as depicted in Figure 8. 
When assessed with and without BL-SMOTE, the AUC values for the proposed X_R101 models were as 
follows: 99.29%, 96.93% respectively. BM1, BM2, BM3, and BM4 had respective AUC values of 98.16%, 
98.29%, 98.34%, and 98.40%.  

 

 
 

Figure 8. Analysis of Proposed X_R101 to baseline networks using the values of AUC (a) BM1 (b) 
BM2 (c) BM3 (d) BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using 

Borderline SMOTE Tomek. 
4.7. Precision of the Proposed X_R101 in Comparison to Other Classifiers 

Using SMOTE TOMEK greatly improves the precision of the proposed X_R101. The proposed X_R101 
models with and without BL-SMOTE achieved consistent precision values of 98.41%, and 93.10%. 
However, BM1, BM2, BM3, and BM4 had corresponding precision values of 92.26%, 93.93%, 95.60% and 
96.72%. Figure 9 shows the main difference that was achieved in the proposed X_R101 by using the BL-
SMOTE. 
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Figure 9. Assessment of Proposed X_R101 to baseline networks using precision (a) Xception, (b) 
ResNet-152, (c) MobileNet-V2, (d) Inception-V3, (e) Proposed X_R101 before BL SMOTE, (f) Proposed 

X_R101 using BL-SMOTE. 
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4.8. ROC of the Proposed X_R101 in Contrast to Baseline Networks 
Utilizing BL-SMOTE substantially improves the precision of the proposed X_R101. In the presencence 

and absence of BL-SMOTE, the precision values for the X_R101 models were as follows: 98.45%, and 93.00 
percent, respectively. On the other hand, the precision values corresponding to BM1, BM2, BM3, and BM4 
were as follows: 92.56%, 94.12%, 95.50%, and 96.53%. The main differentiation introduced in the X_R101 
prototype via the incorporation of the BL SMOTE is depicted in Figure 10. 

 
Figure 10. Evaluation of Proposed X_R101 to baseline networks using AUROC curve (a) Xception, 

(b) ResNet-152, (c) MobileNet-V2, (d) Inception-V3, (e) Proposed X_R101 before BL SMOTE, (f) Proposed 
X_R101 using BL-SMOTE.. 

4.9. Confusion Matrix of Proposed X_R101 to Other Classifiers 
We validated our proposed X_R101 by comparing its results to those of four pre-existing networks 

using a confusion matrix. Significant enhancements were observed in the X_R101 model after the 
integration of BL SMOTE as depicted in Figure 11. Although X_R101 made an error in classifying eight 
case as Bk, three cases as Df, one as mel, three as Mn and one cases as Vasc, it successfully identified 118  
instances of Ak. Similarly , the R_101 correctly indentify the 135 cases of Bcc whereas it misclassify 13 cases. 
In the case of Bk the X_R10 identify 103 instnaces correctly whereas 27 instances were wrongly classified. 
Furthermore, the X_R101 correctly classify 135 instances of Df and only two instances are misclassified. For 
Mel classification the proposed model correctly identify 130 cases and mis classify 23 cases. The X_R101 
correctly identify the 102 cases of Mn and 27 cases are misclassified. For Scc and Vasc the proposed model 
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correctly classified 125 and 120 cases respectively. The results shows the outstanding performance of 
proposed method as compared to other baseline methods. An exhaustive summary of the results is 
presented in Figure 11.  

 
Figure 11. Confusion Matrix of Suggested X_R101 to baseline networks (a) BM1 (b) BM2 (c) BM3 (d) 

BM4 (e) Proposed X_R101 before Borderline SMOTE, (f) Proposed X_R101 using Borderline SMOTE 
Tomek. 
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4.10. Analysis of the Proposed X_R101 Utilizing State-of-the-Art 
An examination of the proposed X_R101 model in relation to previous studies is discussed in 

this section [45-50]. Table 6 displays the results of a comprehensive assessment of the proposed X_R101 
model across multiple performance metrics, including recall, accuracy, and F1-score.  

 
Table 6. Comparison of the X-R101 in relation to the current SOTA 

Ref Year Method Dataset Accuracy Recall Precision F1 
[45] 2023 Fuzzy+DL ISIC 2018 95.90% 91.60% 97.40% 93.75% 
[46] 2023 FCN-ResALexNet ISIC 2018 94.65% 95.85% 87.86% ---- 
[47] 2023 ML+DL,  ISIC Archive 93.00% 93.76% 93.10% ---- 
[48] 2023 DSCC_Net ISIC 2020, 

HAM10000 & 
DermPK 

94.17% 95.00% 94.28% 93.93% 

[49] 2022 ResNet+Naïve Bayes HAM10000 85.50% 85.95% 85.73% 86.84% 
[50] 2021 RCNN  ISIC 2017 95.20% ---- 98.20% ---- 

Ours Proposed X_R101 
using BL SMOTE 

PH2, DermPK 
& HAM10000 

98.21% 98.41 98.33% 98.37% 

4.12. Statistical Analysis of X_R101 
In order to facilitate the comparison of X_R101, the statistical test of McNemar is utilised. The 

likelihood scores produced by the borderline classifiers were employed in the construction of the proposed 
model. In cases where the p-value corresponding to each sample instance is below 0.05, McNemar's test is 
restricted to confirming the null hypothesis by achieving a value of 0.0360. It is feasible to reject the null 
hypothesis on the basis of the findings derived from the statistical experiments. As a result, the X_R101 
model exhibits a benefit over its rivals in terms of efficacy and includes utilization data that the others 
neglect to document. According to the results, the X_R101 model is significantly different from the others. 
 
5. Discussions 

The primary function of dermoscopy images is the detection of skin cancer. With the help of a finely 
detailed image of a particular area, a wide range of skin lesions can be identified. The utilization of a 
dermoscopy image capture method for the classification of Mel, Mn, Bcc, Scc, Vl, Ak, Df and Bk is a rapid, 
precise, and effective process. The implementation of an automated detection system was crucial for the 
timely identification of this critical condition, considering the increasing prevalence of skin cancer cases 
each day. At this time, dermoscopy images possess the capacity to diagnose a variety of diseases 
automatically due to the incorporation of artificial intelligence (AI). To facilitate the timely identification 
and management of skin cancer by medical practitioners, we have developed a CNN-based X_R101 model 
capable of precisely classifying dermoscopy images into the subsequent categories: Mel, Mn, Bcc, Scc, Vl, 
Ak, Df and Bk.  

The experimental outcomes presented above provide evidence that the X_R101 model can effectively 
classify and train skin lesions of the following types: Mel, Mn, Bcc, Scc, Vl, Ak, Df and Bk. A comparison 
analysis of the four baseline classifiers proved that X_R101 performed greatly with a high accuracy rate of 
98.21 % in its skin cancer detection application. We started the training procedure for BM1, BM2, BM3 and 
BM4 models with datasets of consistent resolution (224 x 224 x 3 pixels). In addition, the cross-entropy loss 
method was used during the training of the X-R101 model. The performance of the X_R101 model in Table 
5 is demonstrated against the four baselines that were evaluated along the course of the study. The 
evaluation is carried out through a variety of metrics such as f1-score, recall, precision, and accuracy. The 
X_R101 model is really a good one as ROC of 0.9960, accuracy of 98.21%, precision of 98.41%, f1-score of 
98.37%, and recall of 98.33% indicates. 

The classification performance of the remaining four competitors' approaches, which utilized pre-
trained weights, exhibited a marginal decline. With AUC scores of 0.9840, respectively, the BM4 classifier 
exhibited superior performance in performance evaluation when compared to the BM3, BM2, BM1 and 
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classifiers, which achieved a score of 0.98.16, 0.9829, 0.9834. BM4 demonstrates the highest AUC score (0. 
9840), recall (96.79%), f1-score (96.73%), and precision (96.72%) among the models that were assessed. The 
overall binary classification problem was not impacted by the choice of pre-trained models based on CNN 
in a typical scenario. However, these systems exhibit limitations in their ability for multiclassifcation of 
diseases [12] and face cognitive challenges such as segmentation. As the number of CNN layers increases, 
the majority of researchers [30][37][40-45] consider convolutional neural network (CNN) classifiers 
inadequate for these particular binary classification tasks.  

A comparison of the classification accuracy of contemporary classifiers and the X_R101 model is 
presented in Table 6. Based on empirical evidence and the application of modern techniques, it appears 
that the X_R101 model is capable of distinguisnig the following leisons: Mel, Mn, Bcc, Scc, Vl, Ak, Df and 
Bk. The clinical specialist has derived significant benefits from the dermoscopy images in relation to the 
infection.  
 Singh et al. [45] A modified deep learning model and a fuzzy logic-based image segmentation method 
are suggested for the purpose of diagnosing cutaneous cancer. The paper is noteworthy for its utilisation 
of mathematical logics, methodologies for calculating standard deviations, pre-processing to improve 
dermoscopy images, and the L-R fuzzy defuzzification technique to enhance the results of segmentation. 
To optimise the efficacy of deep convolutional neural network (CNN) architectures during the 
segmentation of skin lesions, a wide variety of metrics are utilised. Furthermore, for the segmentation of 
skin lesions, a novel deep learning architecture based on FCN (Fully Convolutional Network) is suggested 
by Ahmed et al. [46]. As previously mentioned, the decoder segment of the network consists of three 
deconvolutional layers. Conversely, the encoder architecture incorporates the highly regarded deep 
learning frameworks ResNet18 and AlexNet. Tembhurne et al. [47] presents an innovative approach to 
skin cancer detection that combines the fundamental tenets of deep learning and machine learning. 
Machine learning models examine image attributes that were obtained using techniques such as contourlet 
transform and local binary pattern histogram. On the other hand, deep learning models perform feature 
extraction from photographs by employing cutting-edge neural networks.  
  Tahir et al. [48] DSCC Net, a deep learning skin cancer detection system based on convolutional neural 
networks (CNNs), was assessed using three open-source benchmark datasets: ISIC 2020, HAM10000, and 
DermPK. Afza et al. [49] presents a structured architecture that utilizes deep learning and two-dimensional 
superpixels. the contrast of the initial dermoscopy images are enhanced through the integration of locally 
and globally augmented images. Following this, a comprehensive compilation of augmented images is 
utilized to segment skin lesions using a three-step superpixel lesion segmentation approach. Color images 
that are exclusively segmented are produced by utilizing each augmented dermoscopy image to map the 
lesions that have been segmented. These mapped images and acquired features are subsequently fed into 
a ResNet-50 deep learning model via transfer learning. The obtained features have been classified using 
the Naïve Bayes classifier, which has been trained using an enhanced grasshopper optimization approach.  
Nawaz et al. [50] proposed an approach that autonomously classifies early-stage skin cancers by 
integrating fuzzy k-means clustering (FKM) and quicker region-based convolutional neural networks 
(RCNN) within the domain of deep learning. The proposed methodology is evaluated using a wide range 
of clinical images in an effort to assist the dermatologist in promptly identifying this potentially life-
threatening condition. Before implementing faster-RCNN to generate a fixed-length feature vector, the 
described method preprocesses the dataset images to rectify illumination and noise issues and enhance the 
visual information. Following that, epiDermPK afflicted by melanoma was sectioned into segments using 
FKM, which were distinguished by their clearly defined diameters and borders.  

X_R101 exhibits superior capability in distinguishing among various classes of skin cancer through 
the extraction of dominant and discriminative patterns, as well as the detection of anomaly patterns, as 
evidenced by its highest accuracy result of 98.21% in Table 6. The outcomes of the final four baseline 
classifiers are also presented in Table 5. In addition to an examination of the features of Mel, Mn, Bcc, Scc, 
Vl, Ak, Df and Bk, we present a comprehensive clarification of the reasons behind the inferior classification 
performance of previous studies using dermoscopy images. The initial constraint on the classification 
performance of the CNN-based pre-trained classifiers is imposed by the deep networks and final 
convolutional (conv) layers, which minimize the spatial resolution of the feature map. Furthermore, the 
filter sizes of these pre-trained classifiers are inadequate due to the fact that their large input-connected 
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neurons immediately disregard crucial elements. The X_R101 model is capable of resolving these 
shortcomings. An end-to-end CNN-based model was developed with the assistance of Xception and 
resnet101. This model is capable of classifying diverse types of skin cancer from dermoscopy images 
collected from multiple databases. The accuracy issue of low resolution and overlapping in dermoscopy 
images' inflammatory segment has been solved by using the X_R101 model. Also, the model is able to 
speed up the classification performance and is effective in minimizing the adverse effects of structured 
noise. Therefore, the X_R101 model was equipped with the appropriate filter size of 3x3. The findings of 
the experiment illustrate that the X_R101 method can accurately do the multiclassification of Mel, Mn, Bcc, 
Scc, Vl, Ak, Df & Bk and helps the healthcare practitioners. 

 
6. Conclusion  

The goal of our research is to identify a methodology that can simultaneously enhance the accuracy 
of skin cancer detection and reduce the occurrence of false positive outcomes. Therefore, in order to 
improve the timely detection of skin cancer, we present a novel deep-learning architecture that integrates 
the functionalities of Xception and ResNet101. The X_R101 exhibits remarkable performance with regard 
to the classification of Mel, Mn, Bcc, Scc, Vl, Ak, Df and Bk. To evaluate the efficacy of the X_R101 model, 
its classification accuracy was compared to that of four reference models. The identified skin cancer was 
successfully detected by the proposed model, which achieved a success rate of 98.21%. The findings of this 
study indicate that the X_R101 model with BL SMOTE for the multiclassification of skin 
cancer utilizing dermoscopy images in an efficient method. The McNemar statistical test validates the 
efficetive performance of the proposed X_R101. The results benefits the medical practitioners who rely on 
particular diagnostic attributes derived from imaging and enhance their capacity when employing 
dermoscopy for the detection of diverse forms of skin cancer. Moreover, we anticipate that more 
comprehensive datasets containing patients who have been diagnosed with skin cancer will be made 
available to the public. The inclusion of more publically available datasets will significantly improve the 
accuracy of our proposed network. The proposed procedure is expected to enhance dermatologist ability 
to rapidly detect and differentiate between various types of skin malignancies. This study advances the 
early identification and diagnosis of skin cancer, which has important treatment implications for further 
laboratory investigations. Additionally, a significant reduction in the costs related to the detection of the 
critical condition may help alleviate the financial burden.  
Funding: This research received no external funding. 
Conflict of Interest: The author declares no conflict of interest 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 328-0602/2024   

References 
1. Ahmed, A. M., Ahmed, M. H., Saha, S. K., Ahmed, O., & Sutradhar, A. (2022). Optimization algorithms as training approach 

with hybrid deep learning methods to develop an ultraviolet index forecasting model. Stochastic Environmental Research and 
Risk Assessment, 36(10), 3011-3039. 

2. Lee, C., Yoo, S., Lee, H. N., & Lee, J. (2023). DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index 
through Deep Learning. IEEE Access. 

3. Mazhar, T., Haq, I., Ditta, A., Mohsan, S. A. H., Rehman, F., Zafar, I., ... & Goh, L. P. W. (2023, February). The role of machine 
learning and deep learning approaches for the detection of skin cancer. In Healthcare (Vol. 11, No. 3, p. 415). MDPI. 

4. Zia Ur Rehman, M., Ahmed, F., Alsuhibany, S. A., Jamal, S. S., Zulfiqar Ali, M., & Ahmad, J. (2022). Classification of skin cancer 
lesions using explainable deep learning. Sensors, 22(18), 6915. 

5. Agrahari, P., Agrawal, A., & Subhashini, N. (2022). Skin cancer detection using deep learning. In Futuristic Communication and 
Network Technologies: Select Proceedings of VICFCNT 2020 (pp. 179-190). Springer Singapore. 

6. Alwakid, G., Gouda, W., Humayun, M., & Sama, N. U. (2022, December). Melanoma detection using deep learning-based clas-
sifications. In Healthcare (Vol. 10, No. 12, p. 2481). MDPI. 

7. Riaz, S., Naeem, A., Malik, H., Naqvi, R. A., & Loh, W. K. (2023). Federated and Transfer Learning Methods for the Classification 
of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. Sensors, 23(20), 8457. 

8. Gouda, W., Sama, N. U., Al-Waakid, G., Humayun, M., & Jhanjhi, N. Z. (2022, June). Detection of skin cancer based on skin 
lesion images using deep learning. In Healthcare (Vol. 10, No. 7, p. 1183). MDPI 

9. Mirikharaji Z, Abhishek K, Bissoto A, Barata C, Avila S, Valle E, Celebi ME, Hamarneh G. A survey on deep learning for skin 
lesion segmentation. Medical Image Analysis. 2023 Jun 9:102863. 

10. Kousis, I., Perikos, I., Hatzilygeroudis, I., & Virvou, M. (2022). Deep learning methods for accurate skin cancer recognition and 
mobile application. Electronics, 11(9), 1294. 

11. Sharma, A. K., Tiwari, S., Aggarwal, G., Goenka, N., Kumar, A., Chakrabarti, P., ... & Jasiński, M. (2022). Dermatologist-level 
classification of skin cancer using cascaded ensembling of convolutional neural network and handcrafted features based deep 
neural network. IEEE Access, 10, 17920-17932. 

12. Naeem, A., Farooq, M. S., Khelifi, A., & Abid, A. (2020). Malignant melanoma classification using deep learning: datasets, per-
formance measurements, challenges and opportunities. IEEE access, 8, 110575-110597. 

13. Khalil, M., Naeem, A., Naqvi, R. A., Zahra, K., Muqarib, S. A., & Lee, S. W. (2023). Deep learning-based classification of abrasion 
and ischemic diabetic foot sores using camera-captured images. Mathematics, 11(17), 3793.  

14. Naeem, A., Anees, T., Naqvi, R. A., & Loh, W. K. (2022). A comprehensive analysis of recent deep and federated-learning-based 
methodologies for brain tumor diagnosis. Journal of Personalized Medicine, 12(2), 275. 

15. Malik, H., Anees, T., Din, M., & Naeem, A. (2023). CDC_Net: Multi-classification convolutional neural network model for de-
tection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays. Multimedia Tools and Ap-
plications, 82(9), 13855-13880. 

16. Malibari, A. A., Alzahrani, J. S., Eltahir, M. M., Malik, V., Obayya, M., Al Duhayyim, M., ... & de Albuquerque, V. H. C. (2022). 
Optimal deep neural network-driven computer aided diagnosis model for skin cancer. Computers and Electrical Engineer-
ing, 103, 108318. 

17. Akilandasowmya, G., Nirmaladevi, G., Suganthi, S. U., & Aishwariya, A. (2024). Skin cancer diagnosis: Leveraging deep hidden 
features and ensemble classifiers for early detection and classification. Biomedical Signal Processing and Control, 88, 105306. 

18. Nirmala, V. (2023). An automated detection of notable ABCD diagnostics of melanoma in dermoscopic images. In Artificial 
Intelligence in Telemedicine (pp. 67-82). CRC Press. 

19. Zafar, M., Sharif, M. I., Sharif, M. I., Kadry, S., Bukhari, S. A. C., & Rauf, H. T. (2023). Skin lesion analysis and cancer detection 
based on machine/deep learning techniques: A comprehensive survey. Life, 13(1), 146. 

20. Das, J. B. A., Mishra, D., Das, A., Mohanty, M. N., & Sarangi, A. (2022, November). Skin cancer detection using machine learning 
techniques with ABCD features. In 2022 2nd Odisha International Conference on Electrical Power Engineering, Communication 
and Computing Technology (ODICON) (pp. 1-6). IEEE. 

21. Shah, A., Shah, M., Pandya, A., Sushra, R., Sushra, R., Mehta, M., ... & Patel, K. (2023). A comprehensive study on skin cancer 
detection using artificial neural network (ANN) and convolutional neural network (CNN). Clinical eHealth. 

22. Reshma, G., Al-Atroshi, C., Nassa, V. K., Geetha, B. T., Sunitha, G., Galety, M. G., & Neelakandan, S. (2022). Deep learning-
based skin lesion diagnosis model using dermoscopic images. Intelligent Automation & Soft Computing, 31(1). 

23. Mampitiya, L. I., Rathnayake, N., & De Silva, S. (2023). Efficient and low-cost skin cancer detection system implementation with 
a comparative study between traditional and CNN-based models. Journal of Computational and Cognitive Engineering, 2(3), 
226-235. 

24. Jones, O. T., Matin, R. N., van der Schaar, M., Bhayankaram, K. P., Ranmuthu, C. K. I., Islam, M. S., ... & Walter, F. M. (2022). 
Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care set-
tings: a systematic review. The Lancet Digital Health, 4(6), e466-e476. 

25. Ph2 dataset available online: https://www.fc.up.pt/addi/ph2%20database.html , Accessed on 23 feb 2024  
26. Dermpk dataset available online https://data.mendeley.com/datasets/fdhyjjypbd/1 , Accessed on 23 feb 2024 

https://data.mendeley.com/datasets/fdhyjjypbd/1


Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : 328-0602/2024   

27. Ham10000 dataset available online https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classifi-
cation , Accessed on 23 feb 2024 

28. Kassem, M. A., Hosny, K. M., & Fouad, M. M. (2020). Skin lesions classification into eight classes for ISIC 2019 using deep 
convolutional neural network and transfer learning. IEEE Access, 8, 114822-114832. 

29. Abbas, Q., Ramzan, F., & Ghani, M. U. (2021). Acral melanoma detection using dermoscopic images and convolutional neural 
networks. Visual Computing for Industry, Biomedicine, and Art, 4, 1-12. 

30. Reis, H. C., Turk, V., Khoshelham, K., & Kaya, S. (2022). InSiNet: a deep convolutional approach to skin cancer detection and 
segmentation. Medical & Biological Engineering & Computing, 1-20. 

31. Monika, M. K., Vignesh, N. A., Kumari, C. U., Kumar, M. N. V. S. S., & Lydia, E. L. (2020). Skin cancer detection and classification 
using machine learning. Materials Today: Proceedings, 33, 4266-4270. 

32. Ibraheem, M. R., & Elmogy, M. (2020, October). A non-invasive automatic skin cancer detection system for characterizing ma-
lignant melanoma from seborrheic keratosis. In 2020 2nd International Conference on Computer and Information Sciences (IC-
CIS) (pp. 1-5). IEEE. 

33. Rehman, M., Khan, S. H., Rizvi, S. D., Abbas, Z., & Zafar, A. (2018, July). Classification of skin lesion by interference of segmen-
tation and convolotion neural network. In 2018 2nd International Conference on Engineering Innovation (ICEI) (pp. 81-85). 
IEEE. 

34. Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhattacharya, S., & Lakshmanna, K. (2022). Skin lesion classification 
of dermoscopic images using machine learning and convolutional neural network. Scientific Reports, 12(1), 18134. 

35. Agyenta, C., & Akanzawon, M. (2022). Skin Lesion Classification Based on Convolutional Neural Network. Journal of Applied 
Science and Technology Trends, 3(01), 14-19. 

36. Naeem, A., Anees, T., Fiza, M., Naqvi, R. A., & Lee, S. W. (2022). SCDNet: A Deep Learning-Based Framework for the Multiclas-
sification of Skin Cancer Using Dermoscopy Images. Sensors, 22(15), 5652. 

37. Zambrano-Román, M., Padilla-Gutiérrez, J. R., Valle, Y., Muñoz-Valle, J. F., & Valdés-Alvarado, E. (2022). Non-Melanoma Skin 
Cancer: A Genetic Update and Future Perspectives. Cancers, 14(10), 2371. 

38. Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets 
learning. In International conference on intelligent computing (pp. 878-887). Berlin, Heidelberg: Springer Berlin Heidelberg. 

39. Goceri, E. (2023). Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images. Com-
puters in Biology and Medicine, 152, 106474. 

40. Mehmood, A., Gulzar, Y., Ilyas, Q. M., Jabbari, A., Ahmad, M., & Iqbal, S. (2023). SBXception: a shallower and broader xception 
architecture for efficient classification of skin lesions. Cancers, 15(14), 3604. 

41. Mohapatra, S., Abhishek, N. V. S., Bardhan, D., Ghosh, A. A., & Mohanty, S. (2021). Comparison of MobileNet and ResNet CNN 
Architectures in the CNN-Based Skin Cancer Classifier Model. Machine Learning for Healthcare Applications, 169-186.  

42. Mehra, A., Bhati, A., Kumar, A., & Malhotra, R. (2021). Skin cancer classification through transfer learning using ResNet-50. 
In Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2020, Volume 2 (pp. 55-62). Singa-
pore: Springer Nature Singapore. 

43. Budhiman, A., Suyanto, S., & Arifianto, A. (2019, December). Melanoma cancer classification using resnet with data augmenta-
tion. In 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 17-20). IEEE. 

44. Demir, A., Yilmaz, F., & Kose, O. (2019, October). Early detection of skin cancer using deep learning architectures: resnet-101 
and inception-v3. In 2019 medical technologies congress (TIPTEKNO) (pp. 1-4). IEEE. 

45. Singh, S. K., Abolghasemi, V., & Anisi, M. H. (2023). Fuzzy logic with deep learning for detection of skin cancer. Applied Sci-
ences, 13(15), 8927. 

46. Ahmed, N., Tan, X., & Ma, L. (2023). A new method proposed to Melanoma-skin cancer lesion detection and segmentation 
based on hybrid convolutional neural network. Multimedia Tools and Applications, 82(8), 11873-11896. 

47. Tembhurne, J. V., Hebbar, N., Patil, H. Y., & Diwan, T. (2023). Skin cancer detection using ensemble of machine learning and 
deep learning techniques. Multimedia Tools and Applications, 1-24. 

48. Tahir, M., Naeem, A., Malik, H., Tanveer, J., Naqvi, R. A., & Lee, S. W. (2023). DSCC_Net: Multi-Classification Deep Learning 
Models for Diagnosing of Skin Cancer Using Dermoscopic Images. Cancers, 15(7), 2179. 

49. Afza, F., Sharif, M., Mittal, M., Khan, M. A., & Hemanth, D. J. (2022). A hierarchical three-step superpixels and deep learning 
framework for skin lesion classification. Methods, 202, 88-102. 

50. Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R. A., Rehman, A., Iqbal, M., & Saba, T. (2022). Skin cancer detection from dermo-
scopic images using deep learning and fuzzy k-means clustering. Microscopy research and technique, 85(1), 339-351. 
 

https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classification
https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classification

