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Abstract: A significant number of people experience a decline in their quality of life annually due 
to Knee Osteoarthritis, a debilitating joint condition. Clinicians commonly diagnose osteoarthritis 
by identifying potential joint space narrowing visible in knee X-ray images. As bone segmentation 
is crucial for accurate measurement of joint space width, this process require an automated solution 
in the form a U-Net model. This paper demonstrates a deep learning-driven method for automated 
joint detection and bone segmentation in knee radiographs, incorporating a U-Net model with 
VGG11 encoder. The proposed solution effectively detects and extracts joints from radiographic 
images. Additionally, it precisely segments bones, obtaining a segmentation mean Intersection over 
Union (IOU) score of 0.963. An algorithmic approach is introduced for measuring vertical distances 
to determine the joint space width between the femur and tibia bones. With an accuracy rate of 89%, 
the images are reliably classified as either normal or exhibiting osteoarthritis. 
 
Keywords: U-Net; Segmentation; Knee Osteoarthritis; Joint Space Width; Severity Grading; Deep 
Learning; Artificial Intelligence. 

 
1. Introduction 

The gradual erosion of articular cartilage in Knee Osteoarthritis (KOA) leads to eventual joint dys-
function and severe pain [1, 2]. Knee Osteoarthritis (KOA) stands as one of the prevailing arthritis types, 
often aligning with aging and consequently impacting a substantial portion of the elderly population [3]. 
Prominent indicators of Osteoarthritis (OA) encompass pain, stiffness, and decreased mobility. Diagnosis 
by a clinician typically involves assessing these signs, examining knee X-rays and a knee-focused physical 
examination [4]. Considering their affordability compared to MRI scans, knee radiographs serve as a tool 
for clinicians to assess possible joint space narrowing, bone deformities, and the existence of osteophytes 
[5]. 
 The current clinical diagnostic process involves classifying Osteoarthritis (OA) into one of the five 
Kellgren- Lawrence (KL) grades [6]. One of the major indicators of OA is the Joint Space Width (JSW) 
present between the femur and tibia bones. Since this grading relies on experience and can be subjective, 
automated solutions have used minimum JSW for determining the progression of OA. In previous work, 
a two-step solution has been proposed by most researchers which incorporates using a joint detector algo-
rithm and a deep learning classifier for classifying the severity of the disease into KL grades. In contrast 
some researchers have adopted traditional image processing techniques which are primarily based on edge 
detection. Mengko et al., [7] introduced an automated method for osteoarthritis (OA) detection through 
the computation of cartilage Joint Space Width (JSW). The extraction process for the Region of Interest 
(ROI) involved template matching and comparison of similarity between regions. Edge detection filters 
were used to compute the bone boundaries. JSWs were compared with the standard minimum JSW of 
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normal knee to determine the presence of OA. Similar to this method, the JSW between bones was meas-
ured in [8], and in addition, it was successful in identifying the formation of osteophytes. 
 The region of cartilage between the femur and tibia bones was segmented using an active contour 
algorithm in [9]. Subsequently, a random forest classifier was trained on shape, texture, and statistical fea-
tures which resulted in a classification accuracy of 87.92%. In an alternative study, knee arthritis classifica-
tion relied on the utilization of both Self Organizing Map (SOM) and Gabor filter methodologies. This 
approach incorporated 16 GLCM features and yielded notable classification of 93.8% for KL-0, and 88.9% 
for KL-4 respectively [2]. 
 A different template matching approach was applied in [10] which used 20 pre-selected images of 
joint centers for scanning over the radiographs to locate joints. Additionally, a weighted nearest neighbor 
classifier was trained utilizing a diverse set of features, namely: Chebyshev, Texture, Haralick, the first 
four moments and multiscale histograms. The model demonstrated effective classification capabilities, 
achieving an accuracy of 91.5% for categorizing minimal OA images and 80.4% for distinguishing moder-
ate OA images. 
 The above methods use machine learning approaches that have been quite successful in achieving 
high classification accuracies for KL- 0 and KL-4 grades. However, they fail to show improved results for 
OA progression. Bone segmentation is a crucial step when dealing with radiographic images which allows 
researchers to propose specific segmentation methods. Patella bones were segmented from X-ray images 
using landmark data to create a shape model for the bones [11]. Similarly, in their study, the authors [12] 
employed the Active Shape Model (ASM), to extract the tibia and femur bones from knee radiographs. 
Initially introduced by Cootes in [13], the ASM entails a predefined shape approximating the structure to 
be identified within the target image. This model iteratively adapts its shape to effectively match the con-
tours present in the target image. 
       Varying methods were employed in [14-19], for segmenting bone regions in radiographic images. It 
included different preprocessing steps for denoising and enhancing the images. This was followed by ei-
ther finding the strong edges of the bones using an edge detection method or using active contour segmen-
tation. Most of the above approaches are semiautomatic and rely on parameters. In addition, the edge de-
tection filters fail to capture the 3D structure of the bones and often compute irrelevant edges. Moreover, 
the problem with edge detection filters is that their results are not consistent in low quality images and 
often detect unwanted edges. 
      Deep Learning models have shown a tremendous success in detecting OA in radiographs as they utilize 
features learnt from text, images and speech data. Some of the DL solutions for OA detection are described 
below. A Fully Convolutional Neural (FCN) network was utilized in [20] to extract the knee joints from 
bilateral radiographs. The network used binary segmentation masks for pixel-based classification. The net-
work’s output predictions were utilized for finding the countours of joints. For classification of OA, a CNN 
model was trained which classified the images with an accuracy of 60%. Similarly, [21] used a Siamese 
CNN for severity detection of OA which involved feeding patches extracted from the lateral and medial 
compartments of knee joints into the network, resulting in an average multiclass accuracy of 66.71%.  
 Different CNN models with minor adjustments have been employed for the severity classification of 
knee OA in [22-25]. P. Chen et al., [26] used a customized YOLOv2 whereas Wang et al., used YOLO for 
joint detection in X-ray images [27]. Both gait and image features were utilized for classifying KOA based 
on KL grades [28]. Most of the DL solutions explained above have focused more on the localization of joints 
in X-ray images rather than the automatic segmentation of the bones. In this paper, a U-Net model has 
been proposed that automatically segments the joints and bones from X-ray images. Subsequently, a dis-
tance measurement algorithm is developed to calculate the minimum JSW of the bones. And based on the 
computed JSW, the knee is classified as healthy or affected by OA. Previously, Cheung et al., accurately 
segmented femur and tibia bones using a U-Net model. However, it fails to mention how the joint regions 
were extracted in the first place [29]. Furthermore, an XGBoost model was trained to classify the severity 
of the OA. 
 
2. Methodology 

A pre-trained U-Net was employed for the detection of knee joints and subsequent segmentation of 
the femur and tibia bones in knee X-rays. The methodology is divided into two sections: the first section 
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focuses on detecting and extracting knee joints from X-ray images, while the second section concentrates 
on segmenting femur and tibia bones for JSW measurement. 
2.1. Dataset 
 The images were obtained from the Osteoarthritis Initiative (OAI), a multi-center research study on 
knee health [30]. This study encompassed a cohort of 4,800 participants and recorded the development of 
knee osteoarthritis while concurrently tracking relevant biochemical biomarkers. It consisted of Bilateral 
radiographic anteroposterior (AP view) images of both men and women aged between 45 and 79. A col-
lection of 103 bilateral radiographs was used for the purpose of joint detection and extraction. Subse-
quently, 276 joint images were employed specifically for bone segmentation procedures. 
2.2. Pre-Processing 
 The original 16-bit (DICOM) bilateral X-rays were converted into ‘8-bit PNG’ images to make them 
suitable for further processing. Due to variations in dimensions among the radiographs, manual cropping 
was performed to adjust them to 2048x2048 pixels. The images were cropped to preserve their aspect ratio 
and image quality. These cropped images were then used to generate square segmentation masks sized 
512x512, positioned on top of the knee joints, as illustrated in Figure 1(b). The creation of segmentation 
masks was accomplished using an image annotation tool called CVAT (https://www.cvat.ai/). 

 

 
Figure 1. Shows the results of preprocessing operations. (a) Result of cropped image. (b) Shows the 

process of mask annotation. (c) Annotated mask; the red squares represent the joints. (d) Binary mask. 
 The masks were converted to binary, assigning a value of 0 to background pixels and a value of 255 
to foreground pixels. The cropped images and their corresponding annotated masks were resized to 
256x256 before feeding them into the network. The preprocessing results are illustrated in Figure 1. 
2.3. Segmentation using U-NET 
 U-Net, a Convolutional Neural Network designed for biomedical image segmentation, was intro-
duced in [31]. Its significant advantage lies in its ability to achieve robust performance with fewer training 
images compared to other models requiring thousands. U-Net operates on a pixel-based classification con-
cept, assigning each pixel a class to generate a segmentation mask. 

The basic U-Net architecture is composed of a contractive and an expensive path, also known as 
encoder and decoder respectively. The U-Net model used for segmentation, features a VGG11 encoder 
which is a CNN based model pretrained on ImageNet data, as proposed in [32]. The rationale behind using 
pretrained weights from a large dataset, as argued in [32], is to enhance performance when dealing with a 
small dataset, rather than training a model from scratch. The VGG11 architecture comprises of eleven se-
quential layers together with 7 convolutional layers, accompanied by a Rectified Linear Unit (ReLU) acti-
vation function and subsequent Max-Pooling operation as shown in Figure 2. The size of the kernels used 
in each of the convolutional layers is 3x3. The number of channels gradually increases from 64 in the initial 
layer to 512 just before the decoder block after each Mx-Pooling operation. In the U-Net structure, VGG11 
served as the encoder by substituting the fully connected layers with a convolutional layer featuring 512 
channels. The contracting path serves for down sampling feature maps while the expansive path serves for 
up-sampling feature maps. The decoder, responsible for image up-sampling, uses transposed 2D convolu-
tions to enlarge feature maps and decrease channel numbers. Each transposed convolutional layer's result 
is combined with the corresponding encoder output. 

 

https://www.cvat.ai/
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Figure 2. U-NET architecture (VGG11 as encoder) 

 
 

2.4. Joint Detection using U-NET 
For joint segmentation, the U-Net model underwent training using 83 bilateral X-ray images along-

side their respective binary masks. The validation and test sets comprised 10 samples each. Augmentation 
pipelines were established for both training and validation to address the challenge of limited training 
samples. A “ShiftScaleRotate” transformation was applied, involving shifts, scales, and rotations with a 
probability of 0.5. The outcome of this augmentation was then subjected to “RGBShift”, altering channel 
values with a shift limit of 25. Subsequently, “RandomBrightnessContrast” was employed to modify the 
brightness and contrast of the images. 
 

 
Figure 3. Shows the results of mask annotation on knee joints. (a) Joint Image.  

(b) Shows the process of mask annotation. (c) Annotated mask. (d) Binary mask of knee joint. 
  

The pixel values in the binary mask images ranged from 0 to 255, which were normalized to a range 
between 0 to 1. By using transfer learning, the pre-trained U-Net was utilized on knee images to categorize 
each pixel into the 0 or 1 class. Here, the value 0 represents the black background within the mask, whereas 
1 indicates the white area depicting the joint bones. The pre-trained model underwent training on X-ray 
images for 8 epochs, employing a binary cross-entropy loss function. This process is illustrated in Figure 
3. 
2.5. Joint Extraction 

The segmentation masks generated by the network were upscaled to their original size. Following this 
step, the images underwent a partitioning process, splitting them into two halves. This division aimed to 
discern between left and right knee images of the bilateral masks. The knee joint centers were determined 
by using Hu's moments which identified the contours within the white regions. Using these identified 
center points as references, the joint regions were cropped from the original images. This involved 
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extracting 256 rows both above and below the central row, as well as 256 columns to the left and right of 
the central column. As a result, all joint images shared the consistent dimensions of 512x512. 
2.6. Bone Segmentation 

Annotations were applied on the extracted joint images to produce segmentation masks that precisely 
outlined the femur and tibia bones, as depicted in Figure 4. Out of a set of 276 joint images, 241 were 
designated for training purposes, while 10 were utilized for validation, and the remaining 25 were allocated 
for testing the efficacy of the U-Net model. The image selection process was random. Due to the manual 
and time-consuming nature of mask creation, only 276 images were utilized for training. 

 

 
 

Figure 4. Shows the joint detection and bone segmentation process. (a) Bilateral X-ray images (b) 
Segmentation masks with white regions representing joints (c) Masks generated by the model (d) Knee 

joint images.  
(e) Segmentation masks with white regions representing bones (f) Masks generated by the model for 

bone segmentation. (g) Result of edge detection. (h) Joint Space Width calculation. 
 

Similar augmentation techniques, as mentioned earlier, were employed once again to improve seg-
mentation results. The segmented joint images and their corresponding masks were introduced as input 
into the pretrained U-Net, as depicted in Figure 4(d) and 4(e). The network was trained for a total of 10 
epochs utilizing a binary cross-entropy loss function. An Intersection Over Union (IOU) metric, or the Jac-
card Index was used for evaluating the segmentation results. This metric quantifies the overlap between 
the target mask and the predicted mask. The IOU value ranges from 0 to 1, where 0 indicates no overlap 
and 1 signifies complete overlap between the target mask and the predicted mask as expressed in Equation 
1. 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑂𝑣𝑒𝑟	𝑈𝑛𝑖𝑜𝑛	(𝐼𝑂𝑈) = !"#$%!	∩(#%)*+!*,-
!"#$%!	∪(#%)*+!*,-

                                                                               (1) 

2.7. Minimum JSW Segmentation 
The predicted masks generated by the network were subjected to Canny edge detection to compute 

the boundaries outlining the joint bones. Within the medial compartments of the knee joints, the vertical 
distance between the end point of the femur boundary and the initiation point of the tibia boundary was 
calculated. The distance between the boundary pixels was calculated using the Euclidean distance metric, 
as defined in Equation 2. 

 
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑(𝑝, 𝑞)9∑ (𝑞* −	𝑝*)/-

*0*                                                                                  (2) 
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Equal sets of boundary pixels were selected from the medial compartments of femur boundaries 

(edges), and the distances to their respective counterparts in the tibia boundaries were computed. The 
smallest distance, amongst all these calculated distances, was regarded as the minimum joint space width. 
The algorithm for vertical distance measurement was applied to 55 joint images, and the findings of this 
process are illustrated in Figure 5. 

 
 

 
Figure 5. Demonstrates the process of distance measurement between femur and tibia edges. (a) Bi-

nary mask.  
(b) Edges obtained after applying Canny edge operation. (c) Depicts detected edges with gray re-

gions  
representing the vertical distance in Medial and Lateral regions. 

 
To accommodate the downscaling from the original joint image size of 512x512 pixels to the resolution 

of 256x256 pixels used during training, the minimum distance was doubled. This adjustment was made 
because the joint space width is measured in millimeters. To convert the pixel distance to millimeters, 
Equation 3 was employed, considering Pixels Per Inch (PPI), which indicates the number of pixels that fit 
into one inch of the screen. For this study, a screen PPI of 96 was assumed. 

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝐽𝑆𝑊	𝑖𝑛	𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟𝑠 = ((*2%34∗/6.8)
::;

	                                                                                         (3) 

3. Results & Discussion 
3.1. Performance Evaluation of Joint Detection & Segmentation 

The first step in the proposed methodology involves joint detection, which is crucial to accurately 
locate knee joints for bone segmentation. The outcomes of joint detection are illustrated in Figure 6. The 
achieved mean Intersection Over Union (IOU) for joint segmentation stands at 0.588. Notwithstanding the 
relatively modest score, the algorithm demonstrated success in extracting all joint regions by precisely 
identifying the central points of the contours. 

 
Figure 6. Shows the pixel classification and the mask generation process. (a) bilateral radiograph 

image. 
 (b) Binary mask with white regions indicating knee joints. (c) Binary mask predicted by the model. 

3.2. Femur and Tibia Bone Segmentation Performance 
The bone segmentation results for several normal knee joint images are presented in Figure 7. The 

mean Intersection Over Union (IOU) achieved for segmentation is 0.963. This result signifies highly prom-
ising segmentation outcomes, as evidenced by the high IOU score. An IOU of 0.963 indicates that there is 
a substantial overlap between the predicted segmentation masks and the ground truth masks, demonstrat-
ing the model's accuracy in accurately delineating the bone regions in the normal knee joint images. In 
essence, a higher IOU score closer to 1 indicates better agreement and alignment between the predicted 
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and actual segmentation, suggesting robust performance in accurately identifying and isolating the bone 
structures in the images.  

 

 
Figure 7. Displays femur and tibia segmentation results. (a) Cropped knee joint.  

(b) Binary mask depicting bone boundaries. (c) Binary mask predicted by the model. 
3.3. Classification of Osteoarthritis (OA) 

The last phase within the algorithm distinguishes between a normal knee and an OA affected knee. 
Utilizing the minimum Joint Space Width (JSW) derived from the prior step alongside the Kellgren-Law-
rence (KL) grades provided in the ground truth dataset forms the basis for this decision. The dataset only 
includes KL grades for the medial compartments in both the left and right knees, hence focusing solely on 
the readings of the medial compartment. As the dataset consists of KL grades for medial compartments in 
knee X-rays, only the readings of the medial compartments were taken into consideration. 

Due to the manual creation of masks, the calculated minimum JSW readings were mapped to the KL 
grades. For all images with a minimum JSW less than 6.35mm, were classified as indicative of osteoarthritis, 
while readings equal to or greater than 6.35mm were categorized as healthy knee joints. A precise binary 
classification was achieved by matching these values with the KL grades in the dataset. The performance 
metrics of the distance calculation algorithm include an accuracy of 0.89, precision of 0.96, recall of 0.84, 
and specificity of 0.95. These metrics collectively demonstrate the algorithm's ability to effectively distin-
guish between normal and osteoarthritic knee joints, highlighting its accuracy, precision in positive pre-
dictions, ability to capture true positive cases, and capability to accurately identify true negative cases, 
respectively. 
3.4. Discussion 

Table 1 presents a comparative analysis of our proposed approach with existing solutions. The exam-
ination reveals that both [8] and our method have attained elevated mean Intersection Over Union (IOU) 
scores, indicating promising outcomes in bone segmentation. Nevertheless, it is notable that [8] lacks a 
detailed explanation of the process for extracting joint regions from bilateral X-ray images, a pivotal step 
in the context of knee radiographs. In contrast, our solution demonstrates success in precisely classifying 
joint images into normal and osteoarthritis-affected categories, achieving an accuracy rate of 89%. This 
indicates the effectiveness of our method not only in segmentation but also in the subsequent classification 
task, highlighting its comprehensive and robust performance.  

 
Table 1. Comparison of the proposed method with State-of-the-Art Approaches 

Author Dataset Joint 
Detection 

Bone 
Segmentation IOU Classifier Accuracy 

Antony 
[20] 

OAI, 
MOST FCN - - CNN 60.3% 

Tiulpin 
[21] OAI 

Region  
Proposal 

 Algorithm 
- - 

Deep Sia-
mese 
CNN 

66.71% 

P. Chen 
[26] OAI YOLOv2 - - VGG-19 69.7% 

Cheung 
[29] OAI - ResU-Net 0.98 

JSW  
calcula-

tion 
- 

Our Ap-
proach 

OAI U-Net 
(VGG11  
encoder) 

U-Net 
(VGG11 

 encoder) 

0.963 JSW  
calcula-

tion 

89% 
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4. Conclusions  
The primary objective of this study was to achieve accurate segmentation of femur and tibia bone 

regions from knee radiographs to measure the minimum Joint Space Width (JSW) between the bones, 
providing insights into the presence of osteoarthritis (OA) in the knee. In our proposed approach, we em-
ployed a deep learning model to autonomously segment joints from bilateral knee radiographs. Leveraging 
contour detection, the joints were precisely extracted from the original X-ray images. Additionally, the 
bones were segmented from the joints, and edge detection was employed to calculate the minimum JSW 
in all images through the development of a vertical distance measurement algorithm. 

The recorded distance measurements were successfully classified into OA-affected or normal catego-
ries based on the ground truth dataset, which included Kellgren-Lawrence (KL) scores and joint space 
width measurements. The classification achieved an accuracy of 89%, indicating the effectiveness of our 
approach in distinguishing between OA-affected and normal knee joints. 

Looking ahead, our future work will extend this research to perform a more comprehensive multi-
class classification, encompassing KL grades 0 to 4.  This expansion will further enhance the scope and 
applicability of our methodology in assessing different stages of knee osteoarthritis. In addition, the size 
of the dataset will be improved. The utilization of a small dataset was necessitated by the time-intensive 
mask creation process. Enhancing this process would enable the model to seamlessly handle broader range 
of knee radiographs. 
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