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Abstract: Mostly fault in quadcopter occurs in its rotors due to numerous reasons which leads 
towards flight failure. And due to that speedy fault detection is of great significance in practical 
applications. This work proposes a new fault detection method based on Convolutional Neural 
Networks (CNNs) on IMU sensors data to detect and classify the faulty and nominal flight 
conditions. Induced failure are introduced in quadcopter rotor section by varying the accelerometer 
such that yaw, pitch and roll data in Simulink/MATLAB. The data of the faulty model later on is 
used as input for the CNN learning model on WEKA platform. The proposed architecture is capable 
of automatically learning features and parameters which lead towards failure of the quadcopter 
from the supplied data as well as analyzing spatial and temporal fluctuations. On simulated data, 
empirical results demonstrate that our solution can classify various rotor fault types with an 
accuracy of 94%. 
 
Keywords: Rotors failure; UAV, Convolutional Neural Network (CNN); Simulink; Fault induction; 
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1. Introduction  
With the development of modern technology, UAV is drawing more attention because of its ad-

vantages of minimum cost and greater efficiency. Its safety and reliability problems are therefore raised. 
As the principal component of the flight control   system, once the rotor fails, the UAV will inevitably be 
put in a dangerous situation. Therefore, conducting real-time fault analysis is important for the rotor so 
that timely actions can be taken to alleviate the fault influence and guarantee the flight safety. Many theo-
ries based on fault identification and diagnosis are proposed. The identification is based on vibrations. 
Whenever the unbalancing occurs due to changing thrust in air, the vibration occurs and through usage of 
some sensors or controlling units one can identify the fault. However, it is still not easy to identify and 
diagnose within the limit of time. Numerous methods and techniques are practiced locating the cause; 
additional sensors, introducing updated controllers and many more. 

In recent years, data-driven approaches are getting more attention due to their robustness and relia-
bility in fault detection. The fault detection based on a data-driven approach extracts various features from 
the original data and feeds them into the neural network model to obtain the fault detection results directly. 
The learning-based approach based on supervised learning requires experimental data containing the be-
havior of faulty quadrotors for training and labeling the fault cases. On the other hand, data-driven tech-
niques based on Artificial Intelligence (AI) are being utilized with smartphones and driverless cars to ad-
dress many complicated challenges. In AI machine learning methods and techniques are tested for UAVs, 
numerous filters and classifications have been carried out such as SVM and K-filters. Neural networks are 
the critical learning model in machine learning algorithms, which are applied in various application sce-
narios. Many types of neural networks have become mainstream in the data-driven based methods on 
UAV flight data fault detection and recovery. 
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This research proposes Convolutional Neural Network (CNN) for detection of faults. If an abnormal 
behavior is found in the sensor data, then the fault identification is performed. A model-based design is 
approached in this research work. The UAV tool included in MATLAB/Simulink is utilized to accomplish 
the needed aim. It offers several quadcopter functions and saves a lot of time. The variation is carried out 
in PID controller integrally, the fault is introduced in two ways 1. In environmental conditions such as 
wind speed, thrust and 2. In altitude controller that is yaw, pitch, roll and their angles with respect to other 
parameters. Later, the data acquired from Simulink model is used as input for neural network model. Weka 
platform is used for preprocessing and designing CNN model of our UAV quadcopter. 

2. Literature Review 
In the article [4] it is suggested that most of the current research on fault detection and identification 

focuses on problems in the UAV's sensors and actuators. When an accurate physical mechanism can be 
modelled, the UAV actuator failure detection methods based on physical models are extremely effective 
and have quick responses. And in article [6] the context of practical application, it is challenging to be 
satisfied. Due to their superior performance and adaptability, machine learning-based techniques have 
grown more popular. In article [7] through the appropriate mapping connection between output and input, 
machine learning methods may analyze measurement data and efficiently get the desired information. The 
approach is very simple to use and doesn't call for a lot of technical expertise. In machine learning algo-
rithms, neural networks are the key learning model [2,3].  

The Neural networks is the critical learning model in machine learning algorithms, which are applied 
in various application scenarios. Many types of neural networks have become mainstream in the data-
driven based methods on UAV flight data fault detection and recovery [1]. For instance, improved the 
accuracy of UAV fault detection through the de-rending and de-noising algorithm [8]. proposed a long 
short-term memory and residual filtering (LSTM-RF) model to promote the performance on fault detection 
and recovery for the UAV sensors [9]. combined two-dimensional convolutional neural network (2DCNN) 
with long short-term memory (LSTM) to detect the insidious damages [10]. completed the detection of 
abnormal operating conditions of steam drums using the gate recurrent unit auto encoder neural network 
(GRU-Auto Encoder) [11]. designed a multi-channel convolutional neural network neural network to 
achieve the data classification [12]. proposed a seismic facies classification method based on the convolu-
tional neural network (CNN) to improve classification accuracy, in which the CNN was used for feature 
extraction of image data [13]. The above literature shows a good performance on fault detection and feature 
learning. However, they have a weakness on the feature selection and fault detection effected by the irrel-
evant data in time series sequences. the exhibition examination of a completely tuned brain network pre-
pared with the lengthy negligible asset dispensing network (EMRAN) calculation for ongoing recognizable 
proof of a quadcopter. Outspread premise capability organization (RBF) in view of framework recogniza-
ble proof can be used as an elective strategy for quadcopter displaying. To forestall the neurons and organ-
ization boundaries choice difficulty during experimentation approach, RBF with EMRAN preparing cal-
culation is proposed.  

This programmed tuning calculation will execute the organization developing and pruning strategy 
to add or take out neurons in the RBF. The EMRAN's performance is contrasted and the insignificant asset 
dispensing network (MRAN) preparing for 1000 information yields undeveloped demeanor information. 
The discoveries show that the EMRAN technique produces a quicker mean preparation season of generally 
4.16 ms for neuron size of up to 88 units contrasted with MRAN at 5.89 ms with a slight decrease in expec-
tation precision. [15]. In article [16] the model purposes a cutting-edge CNN, DenseNet-161, to order the 
pictures extricated from a forward-looking camera of a UAV. Considering grouping result, the model cre-
ates an important control order to securely explore the UAV in an obscure hallway climate. Rather than a 
portion of the past techniques, framework just purposes the contributions from a monocular camera.  

Thus, it is computationally extremely productive, likewise presenting a dataset of pictures relating to 
various places of the UAV all through various lengths of hallways, with shifting aspects. Likewise, the 
aftereffect of our route calculation in certifiable hallway conditions is exceptionally reassuring. Whereas in 
[17], This article presents a clever methodology for identifying and detaching broken actuators in excep-
tionally excess Multirotor UAVs utilizing flowed Profound Brain Organization (DNN) models. The pro-
posed Issue Identification and Separation (FDI) structure joins Long Transient Memory (LSTM)- based 
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shortcoming discovery and broken actuator finder models to accomplish ongoing checking. The review 
centers around a Hexa rotor multirotor UAV furnished with sixteen rotors. To handle the intricacy of FDI 
coming about because of overt repetitiveness, a parceling method is presented in view of framework ele-
ments. The proposed FDI conspire is made from a locale classifier model liable for distinguishing short-
comings and issue finder models that definitively decide the area of the bombed actuator. Broad prepara-
tion and testing of the models show high precision, with the provincial classifier model accomplishing 
98.97% exactness and the shortcoming finder model accomplishing 99.107% precision. Besides, the plan 
was coordinated into the flight control arrangement of the UAV, prior to being tried by means of both 
continuous observing in the reproduction climate and examination of recorded genuine flight information. 
The models display amazing execution in recognizing and limiting infused shortcomings. Thusly, utilizing 
DNN models and the dividing strategy, this examination offers a promising technique for precisely iden-
tifying and disconnecting broken actuators, subsequently working on the general execution and constancy 
of profoundly repetitive Multirotor UAVs in different functional situations. 

In this research, we propose CNN deep learning architecture to detect and identify the actuator fault 
from drone’s IMU sensor data. 

3. Proposed Solution & Methods 
In this study, our aim to develop a fault classifier for UAV quadcopter using simulated data. Figure 1 

illustrates the proposed methodology of our work. A Simulink model of a quadcopter is taken and is used 
to generate data under both normal and specified fault conditions. The data collected from Simulink model 
under nominal and abrupt conditions by varying the environmental conditions such that wind speed and 
wind angles and its impact on accelerometer parameters that are yaw, pitch and roll values. The generated 
data from the Simulink model preprocessed and divided for training and validation with these training 
samples under supervised learning the CNN based classifier is developed to classify rotor’s fault. Finally, 
performance analysis of designed model is carried out which evaluate the final predicated and actual re-
sults of our model and provide the accuracy of our model. 

Figure 1. Block diagram of CNN based UAV actuator fault detection approach. 

3.1 UAV-Simulink model 
The Simulink model of UAV quadrotor is shown in Fig.2. It consists of three subsystems, i.e., on board 

sensors, multirotor and external sensors. Multirotor subsystem contains three controllers for position, alti-
tude, and yaw. To acquire data from quadcopter sensors, first input signals are applied in safe range to 
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identify the stability of quadcopter. After collecting the data of normal flight of quadcopter, we induced 
the fault in Simulink model of UAV by alternating the PID controller data. 

Figure 2. Simulink model of UAV quadcopter 

3.2 Data simulated under normal and fault condition. 
An efficient and secure method is to train a defect classifier with simulated data and use it on a real 

quadrotor. The major concern of this study is to detect the actuator fault based heading and altitude pa-
rameters i.e., yaw, pitch and roll measured through IMU sensor. First, a step input signal of 0.5mV to 5V is 
applied in safe range to identify the stability of quadcopter model. The fault is then introduced in yaw, 
pitch and roll by varying their angles in heading and position as shown in Fig.3. Besides this, we also 
increase the average wind speed using onboard sensors and recorded the variation in the roll parameter. 
From the PID controller shown in Fig.3. In figure 3 the data related to heading, position as well as altitude 
controller is taken for the classifier. 

Figure 3. PID controller of UAV quadcopter in Simulink 
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For the safe flight all the gain parameter of pitch, roll and yaw are kept under the safe range as shown 
in Table1. 

Table 1. Gain parameters of PID controller before fault injection 

S.No. Model description Gain parameters 

1 Outer proportional loop control for pitch Kp =8.5 

2 Inner PI control for pitch angular velocity Kp = Ki =0.04 
3 Outer proportional loop control for roll is Kp =8.57 
4 Inner PI control for roll angular velocity Kp = Ki =0.04 
5 PID control for yaw Kp = Ki = Kd =4.28 

After acquiring the data of safe flight under controllable parameters, we introduced fault in Simulink    
model by varying its IMU accelerometer data, i.e., yaw, pitch, and roll. The fault is injected in multirotor 
as shown in Fig.4. 

 

Figure 4. Injecting fault in multirotor. 
 

The fault is injected in plant model through variations in PID parameters of multirotor system. 
Through the increase and decrease in gain parameters, variations in yaw, roll and pitch are recorded. A set 
of data is collected for 100 times flight run. The data is collected at numerous stances for yaw, pitch, and 
roll.  The gain parameters of yaw, pitch and roll after injection of the fault are given in the Table2. 

Table 2. Gain parameters of PID controller after fault injection 

S.no: Model description Gain Parameters after Injecting fault 

1 Outer proportional loop control for pitch Kp=13.98 
2 Inner PI control for pitch angular velocity Kp=0.069 ,Ki=0.05 
3 Outer proportional loop control for roll is Kp=13.87 
4 Inner PI control for roll angular velocity Kp=0.52,Ki=0.03 
5 PID control for yaw Kp=2.56,Ki=0.06,Kd=6.9 

3.3 CNN Based Fault Classifier 
    CNNs, also referred to as convolutional neural networks, are an effective kind of neural network used 
for processing and identifying tasks. It contains layers including convolutional, activation, and pooling 
layers.  In this study, the actuator problems are categorized using CNN architecture. The CNN model 
outputs with the label utilizing the data obtained from the Simulink model as input. The CNN architecture 
for the suggested job is shown in Fig. 5, which includes many layers and an output layer. The ultimate 
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output of a CNN is created by the output layer, which often results in a probability distribution of classes 
for a classification problem. The output layer in this case uses a hyperbolic tangent activation function to 
create a probability distribution over the various classes. The deep learning model designed is trained with 
six classes as different types of rotor condition i.e hover, rotor stabilize, rotor abrupt, rotor destabilize, rotor 
loss signal and rotor failure. The predicted class for the provided data is determined based on the highest 
possibility class and then categorized as one of specified rotor condition using the output layer 

Figure 5. Proposed CNN model for actuator fault classification 
 

4. Results and Discussions 
4.1 Dataset collection 

The dataset for this study is developed from the Simulink model. The acquired data is converted first 
into .mat file and then into .csv file. The collected dataset contains 26 attributes with 3000 entries having 
numeric, string and binary values.  Data preprocessing is used to turn the original data into a clean data 
set. The dataset is collected in raw format, which makes analysis impractical. We perform various opera-
tions including data discretization and filtering.  The resulting data is then labelled to show six rotor con-
ditions. The labelled dataset was split into two sets: a training set with 70% of the data and a validation set 
with 30% of the data. Some of the rows of the dataset are shown in figure 6 where the last column indicates 
the label of the rotor condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Data collected from Simulink model. 
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4.2 Model design & analysis 
For the categorization of rotor conditions labeled as follows: hover, rotor stabilize, rotor abrupt, rotor 

destabilize, rotor loss signal, and rotor failure, a CNN classification model is constructed and trained using 
the Weka platform. We sent the preprocessed data into the CNN model to train it, keeping 70% of the data 
as training data and the remaining 30% as validation data. The gradient descent optimizer is used to train 
the model using a learning rate of 0.04, a batch size of 100, and 300 epochs. The findings show that for these 
types of rotor defects, the created model achieves a greater level of classification accuracy. Table 4 lists the 
hyper-parameters used for the model training as well as the suggested model's validation accuracy. 

Table 3. Selected hyper parameters. 

S.No: Parameters Value 
1 Total filters used 3 
2 Kernel size for convolution 3x3 filter size 
4 Activation function Hyperbolic tangent 
5 Optimizer Gradient descent 
6 Max epoch 300 
7 Learning rate 0.04 
8 Momentum 0.2 
9 Batch size 100 
10 Validation split 20 

 
4.3. Confusion Matrix 

In figure 07 confusion matrix gives an overview of the generated model's performance and demon-
strates how well it can predict most of the classes. Analysis of the matrix reveals that the data of six rotor 
failure scenarios was effectively trained in our CNN model.  

 

 

 

 

 

 

 

 

 

 
Figure 7a. Confusion Matrix  

From Figure 7 (a) it is justified that those cases which have true positive values such as hover are 
predicated positive with 5.94%, whereas no false negative value is recognized which is 0%. The false posi-
tive is 2.97% and the true negative values which are labelled as failure cases data are correctly classified in 
true negative values with 91.06%. Similarly, the confusion matrix of other five conditions are carried out. 
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Figure 7b. Confusion Matrix 
In Figure 7(b) it is justified that those cases which have true positive values for rotor stabilized are 

predicated positive with 1.58%, whereas no false negative value is recognized which is 0%. The false posi-
tive is 7.33% and the true negative values which are labelled as failure cases data are correctly classified in 
true negative values with 90.04%.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 7c. Confusion Matrix 
In Figure 7 (c) it is justified that those cases which have true positive values for rotor abrupt are pred-

icated positive with 3.37%, whereas no false negative value is recognized which is 0%. The false positive is 
5.54% and the true negative values which are labelled as failure cases data are correctly classified in true 
negative values with 91.04%. 
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Figure 7d. Confusion Matrix 
In Figure 7 (d) it is justified that those cases which have true positive values for rotor destabilized are 

predicated positive with 0.4%, whereas no false negative value is recognized which is 3.56%. The false 
positive is 0% and the true negative values which are labelled as failure cases data are correctly classified 
in true negative values with 96.04%. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 7e. Confusion Matrix 
Figure 7 (e) it is justified that those cases which have true positive values for rotor loss signal are 

predicated positive with 2.34 %, whereas no false negative value is recognized which is 3.56%. The false 
positive is 6.53% and the true negative values which are labelled as failure cases data are correctly classified 
in true negative values with 87.57%. 
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Figure 7f. Confusion Matrix 
In Figure 7 (f) it is justified that those cases which have true positive values for rotor stabilized are 

predicated positive with 3.96%, whereas no false negative value is recognized which is 0%. The false posi-
tive is 6.14% and the true negative values which are labelled as failure cases data are correctly classified in 
true negative values with 89.9%. 
4.4 Performance Report 

The performance report shown in Figure 08 contains significant information regarding the accuracy, 
recall, and f-measure of the created model for each situation. Upon examining the report, we conclude that 
all rotors of quadcopter display precision rate in different scenarios as shown in Figure 9 of different ROCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Showed the Developed model classification report. 
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Figure 9a. ROC curve of Hover 

 

 

 

 

 

 

 

 

 

 

Figure 9b.ROC curve of Rotor stabilize. 

 

 

 

 

 

 

 

 

 

Figure 9c ROC curve of Rotor abrupt 
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Figure 9d. ROC curve of Rotor destabilize. 

 

 

 

  

 

 

 

 

 

 
Figure 9e. ROC curve of Rotor loss signal 

 

 

 

 

 

 

 

 

 

 
Figure 9f. ROC curve of Rotor failure 
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Figure 9. shows the ROC plots (a, b, c, d ,e ,f) for rotors. The ability of classifiers, i.e., how many clas-
sifiers can predict only samples of their class is described by ROC plots as shown in Figure 9. In this Fig 
(i.e., Fig. 9), the nearness of curves in ROC plot towards their top left corner indicates better performance. 
4.5 Model Implementation 

The CNN model implementation is shown in Fig. 10. The outcomes indicate that the design of the 
model and the chosen parameters were successful in increasing the classification accuracy for these cate-
gories on rotor failures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. CNN Model Implementation 
After implementing the model, the CNN classifier provides detailed data at each node of the rotor 

failure. The predicated and actual value curve of rotor failure shown in Figure 11. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. CNN Model predicated and actual condition curve. 
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The different scenarios of rotor condition are visualized in Figure 11. The x-margin predicates the 
actual condition of rotor whereas, in y-margin the predicated condition is visualized.  
At each point the CNN model provides detailed data of rotors as shown in fig 12 (a), (b), (c), (d). 

 

Figure 12 (a) Rotor 1       Figure 12 (b) Rotor 2 

From figure 12 (a) we can conclude that our predicated value and actual value based on our given data are 
accurately classified. The rotor 1 failure occurs at given parameter with the mentioned parameters. Simi-
larly for all the four rotors the same procedure is being carried out. 

 
Figure 12 (c) rotor 3       Figure 12 (d) rotor 4 

Figure 12. Detailed data of rotors failure (a) rotor 1 failure, (b) rotor 2 abrupt anomaly (c) rotor 3 destabi-
lize (d) rotor 4 failure. 
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5. Conclusion & Future work: 
This research developed Convolutional Neural Network model for detection of rotors failure based 

on the quadcopter IMU sensor data. Using MATLAB, a Simulink model of a quadcopter is taken to gener-
ate data under both normal and specified fault conditions by varying its accelerometer values. After col-
lecting the data under safe and failure range by increasing the wind speed and its impact on quadcopter 
condition we generated training samples and their labels for our CNN algorithm. The data filtered under 
supervised learning. Later the data sample is divided for training and testing. The CNN based classifier is 
developed to classify rotors faults. All the rotor failures under CNN classifier show the exact values at 
which rotors of the quadcopter fail. The predicated conditions under the training data matched our testing 
sample. Our proposed model can classify various types of failure with 94% accuracy and is able to detect 
the condition of quadcopter along with fluctuated parameters and conditions. 

As for future work, we intend to test our model in more crash/attack scenarios, such as those with 
propellers that are partially damaged but still work, cyberattacks, etc. Additionally, we intend to test our 
models on heterogeneous UAV platforms to evaluate their potential for generalizability. Later, we'll create 
methods for making decisions in real time to protect the drone from the identified error. 
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