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Abstract: Skin cancer is one of the most common types of malignancies around the world, and the 

ability to detect skin cancers in an early stage is crucial for improving overall patient outcomes. This 

study introduces a hybrid deep learning framework that utilizes self-supervised pretraining, multi-

architecture ensemble learning, and explainable AI approaches to enable accurate and interpretable 

skin cancer diagnosis. This framework uses SimCLR-based contrastive learning techniques to 

generate powerful feature representations from large data sets of unlabeled images of 

dermatoscopic images before implementing either supervised fine-tuning processes or feature-level 

fusion processes on three different types of architectures (EfficientNetV2-L, Swin Transformer, and 

ConvNeXt). In order to classify patients using the features derived from the different architectures, 

a meta-learning classifying component based on LightGBM is built into the model and provides 

explainability through the Grad-CAM and SHAP explainable AI methods. The results of the 

experiments performed with benchmark datasets (ISIC, and HAM10000) demonstrate the proposed 

method outperformed previously established baseline models by a wide margin, achieving 94.5% 

accuracy, 92.55% precision, and 93.26% recall, providing evidence of the robustness, high sensitivity, 

and reliability of the proposed method in the early detection of skin cancer. 
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1. Introduction 

There are many cases of skin cancer in the world, Non-Melanoma Skin cancer is the most common 

cancer in the World, estimated at 1,234,533 cases of Non-Melanoma Skin Cancer and 69,416 deaths from 

the disease [1]. An estimated 330,000 new cases of melanoma were diagnosed in the world in 2022 and 

related deaths totaled almost 60,000 [2]. Even with considerable improvements in various treatments, early 

detection of Skin Cancer is still most critical determining factor for how well patients are able to survive 

and recover from their illness. With this urgent need for Early Detection, we can expect that as the demand 

for better diagnostic approaches continues to grow, current limitations associated with Traditional 

Methods will need to be overcome with more advanced methods [4]. 

Traditional dermatological examination relies heavily on visual inspection and clinical expertise, often 

supplemented by dermoscopy for enhanced visualization of skin structures [5]. However, this 

conventional approach faces substantial challenges including inter-observer variability, diagnostic 

subjectivity, and the limited availability of specialized expertise, particularly in resource-constrained 

healthcare settings. These diagnostic limitations have created pressing demands for objective, accurate, 

and accessible tools that can augment clinical decision-making while reducing dependency on subjective 

interpretation [6]. The evolution toward computational solutions represents a natural progression in 

addressing these clinical challenges. 

Artificial Intelligence (AI) and Deep Learning (DL) technologies have drastically changed how we use 

medical imaging by providing the ability to improve diagnostic accuracy through automation [7]. By using 
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tendon-like models (Deep Learning algorithms) that are comparable in accuracy to board-certified 

dermatologists, DL will allow us to better classify skin lesions accurately (benign vs malignant) than 

humans will most likely produce. Such algorithms use large numbers of imaging (deep imaging) datasets 

to identify complex patterns that may not immediately be apparent to a human eye; thus, making them an 

opportunity to improve inaccuracy [8]. The transition of automated methods from traditional 

Convolutional Neural Networks (CNNs) to more advanced architectures of CNN has shown further 

opportunity to improve our current capabilities in dermoscopy applications. 

Emerging methodologies such as Vision Transformers and Hybrid Models in computer vision are 

promising methods to further advance and/or automate some of the dermoscopy applications we see today 

[9]. The advent of novel AI methodologies will continue to create advantages for working with 

Dermoscopy, yet several limitations remain, such as data scarcity and model interpretability. Most AI-

driven systems currently continue to primarily utilize single-model (single architecture) methodologies, 

which do not encompass the entire feature representation spectrum needed for comprehensive lesion 

analysis. Because of this limitation, the creation of more sophisticated ensemble methodologies 

incorporating multiple complementary architectures continues to be needed. 

The emergence of Self-Supervised Learning (SSL) has provided at least one potential solution to the 

issue of being able to build ML systems using SSL, thus, providing a means for learning to generalize 

features from a dataset where labeled images do not exist. For example, the SimCLR Framework has 

produced excellent performance levels associated with learning to generalize features from unlabeled 

images by generating augmented views of images and distinguishing between positive and negative image 

pairs (comparing). Thus, by allowing ML systems to learn robust feature representations without needing 

explicit metadata associated with the image (explicit annotations), SSL is a methodology that addresses 

some of the Data Limitation Challenges of the current Supervised Learning methodologies. By combining 

SSL techniques of pretraining with Supervised Fine-Tuning, we can now maximize the usefulness of the 

medical imaging dataset. 

Combining multiple complementary architectures through an Ensemble Learning approach has 

proven to be another key area of advancement in improving the diagnostic accuracy of the upcoming AI-

driven diagnostic systems beyond what a single architecture can currently produce. However, the biggest 

deterrent to using AI within the clinical/healthcare arena is the general lack of Identifiable/model 

Explainability. Clinicians need an explanation of how a model arrived at its conclusion(s) so that trust can 

be established in these new automated systems. To resolve this issue, the incorporation of Explainable AI 

techniques takes this need into consideration. For example, Grad-CAM, Shapley Value Explanation, and 

Attention Mechanisms allow clinicians to visually understand how AI makes decisions to help them 

establish trust in AI systems within the clinical environment. 

The proposed research will investigate these multi-dimensional limitations within an integrated 

framework that effectively synergistically integrates Self-Supervised Pretraining, multi-resolution 

Ensemble Architecture strategies, and Advanced Explainable AI (XAI) Techniques in order to develop a 

clinically viable AI diagnostic system. This Hybrid Model will provide the opportunity to Learn Robust 

Feature Representations from Unlabeled Dermoscopy Data using Contrastive Learning techniques 

(SimCLR) and learn to utilize Supervised Fine-Tuning with Dynamic Hyperparameter Optimization 

techniques (Optuna). These Hybrid Models will be utilized via a combination of Incremental/Feature Level 

Fusion, and Meta Learning approaches, along with Regressor-based Ensembles (Example: LightGBM), to 

arrive at a Final Classification. 

The major contributions of this research include: 

• Integration of self-supervised pretraining using SimCLR with supervised fine-tuning to effectively 

leverage both labeled and unlabeled dermoscopic images, addressing the critical data scarcity problem 

in medical imaging. 

• Development of a novel multi-architecture ensemble approach that combines EfficientNetV2-L, Swin 

Transformer, and ConvNeXt architectures through advanced feature-level fusion and meta-learning 

using LightGBM for enhanced diagnostic accuracy. 

• Implementation of comprehensive explainable AI framework integrating Grad-CAM, SHAP, and 

attention visualization to provide clinical interpretability essential for trust-building and adoption in 

dermatological practice. 
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The remainder of this paper is organized as follows: The "Literature Review" discusses the literature-

based methods of diagnosing skin cancer that have been developed using various techniques. The use of 

materials and techniques used for the development of our model is presented in the "Proposed 

Methodology" where we describe the processes used in the development of our model along with the 

results obtained from our model discussed in "Results". Finally, the "Conclusion" section presents the 

conclusions drawn from the results of this study as well as directions for future work. 

 

2. Literature Review  

In the past decade, dermatologists have seen a dramatic increase in how artificial intelligence can help 

identify and differentiate skin cancer. The state of the art in automated detection and classification of skin 

cancer via the use of machine learning techniques based on deep learning models has achieved 

unprecedented success. This article is a thorough review of the literature and will explore how 

computational methods have evolved over time in the diagnosis of skin cancer, with a focus on self-

supervised learning techniques, ensemble-based systems, transfer learning applications, and explainable 

AI techniques that form the basis of current research in this area. 

One of the most exciting developments in self-supervised learning techniques is that they represent a 

major advancement in the field of medical image analysis. For many years, dermatologists and other 

medical practitioners have been challenged by the lack of sufficient labeled data to create robust diagnostic 

systems [11]. The application of self-supervised pre-training followed by a supervised fine-tuning 

approach has been shown to have tremendous success in the area of natural image classification and has 

also begun to be applied in the area of medical images [12]. Recent systematic reviews of the literature have 

detailed the many ways self-supervised learning could contribute to the development of robust medical 

imaging models by allowing for the analysis of vast amounts of medical data without the use of labeled 

data. 

The SimCLR framework has generated interest among medical imaging practitioners, based on its 

success in developing generalized feature representations that can be used across a wide variety of medical 

imaging tasks [13]. Azizi et al. demonstrated the superiority of using a self-supervised pre-training 

approach on medical images over the use of ImageNet as a pre-training source for the training of medical 

image classification models, particularly in the field of dermatology [14]. They demonstrated that the 

domain of study was more restricted with the use of domain-specific self-supervised pre-training, resulting 

in improved performance on downstream classification tasks because the domain of study was closer to 

the source. 

Over the past several years, many deep learning architectures have been implemented and have 

advanced the development of skin cancer detection systems, each possessing distinct network architectures 

that have advantages in the processing of dermoscopic images. Specifically, convolutional neural networks 

have historically ruled the field of medical image analysis. Many of the traditional network architectures, 

including VGGNet, GoogleNet, and ResNet, are employed for the classification of skin lesions [15]. These 

architectures have established benchmarks for performance and laid the groundwork for the development 

of more recent and sophisticated approaches to the classification of skin images. In particular, the 

introduction of the EfficientNet architecture has provided a considerable advancement in the development 

of a network that is capable of generating a balanced trade-off between the accuracy of skin cancer 

diagnosis and the time and computational resources necessary for training the model [16]. 

Although many advances have been made in AI applications for skin cancer diagnosis, some of the 

limitations and fault lines present in current literature regarding the potential applicability of AI to skin 

cancer diagnosis are still unresolved. For example, the vast majority of existing systems for skin cancer 

diagnosis rely on single architecture models and/or simple ensemble techniques to evaluate skin lesions, 

resulting in a missed opportunity to capitalize on the complementary characteristics that multiple different 

architectural paradigms possess. Additionally, there has been limited research conducted with respect to 

the application of self-supervised pre-training techniques in dermatological applications. As a result, there 

remains an abundance of unlabeled skin imaging data that could be used to improve feature learning 

through the use of self-supervised learning. Furthermore, the lack of comprehensive XAI (explainable 

artificial intelligence) frameworks that are capable of integrating the many techniques related to XAI 

severely limits the clinical adoption of AI for skin cancer diagnosis. Moreover, the use of only single 
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technique-based XAI frameworks limits the depth and breadth of the interpretability of the model. Finally, 

the integration of DPHO (dynamic hyperparameter optimization) with multi-architecture ensemble 

learning has attracted relatively little research attention in published literature and represents a significant 

research gap. 

 

3. Materials and Methods  

This research proposes an integrated system of Hybrid Deep Transfer (HDT) learning for improved 

Skin Cancer Diagnostic (SCD) capabilities utilizing Self-Supervised Pretraining, Ensemble Learning and 

Explainable Artificial Intelligence (EAI). The methodology includes pre-training using the SimCLR 

algorithm to extract image representations from extensive collections of unlabeled dermoscopy images. 

The HDT Model then employs end-to-end training, whereby a model will use the features extracted from 

EfficientNetV2-L, Swin Transformer and ConvNeXt networks, combine these into a combined 

representation and predict the skin pathologies via an ensemble classification model specifically designed 

for skin pathology detection, LightGBM. The integration of three networks allows for increased variability 

in image representations, reduces bias occurring from a single model and enhances the overall accuracy of 

diagnosing pathology. Finally, this framework applies explainable AI (EAI) techniques, utilizing 

techniques such as Grad-CAM and SHAP to generate interpretable predictions, facilitate decisions based 

on clinical reliability and ensure the model can provide transparency in the automated detection of skin 

cancer. 

 
Figure 1. Proposed Model 

3.1. Dataset Description  

Two benchmark datasets were selected to comprehensively evaluate the methodology: the 

International Skin Imaging Collaboration (ISIC) 2019 database and the HAM10000 database. The ISIC 2019 

database consists of 25,331 dermatoscopic photographs of skin abnormalities. Each photograph is labelled 

by an expert to assist in the determination of whether the skin abnormality is malignant or benign. There 

are eight diagnostic categories represented within the ISIC 2019 database: melanoma, melanocytic nevi, 
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basal cell carcinoma, actinic keratoses, benign keratoses, dermatofibromas, vascular lesions, and squamous 

cell carcinomas [17]. The HAM10000 database adds another 10,015 images of pigmented skin lesions that 

also came from dermatoscopic imaging. The HAM10000 database contains images across seven skin lesion 

categories [18]. Additionally, the HAM10000 database contains several complementary features: diverse 

imaging conditions, patient demographics, and varying lesion appearances that enhance the overall 

robustness of the training process. The two datasets combined yield a total of 35,346 images that may be 

used to train and evaluate models on a diverse set of features, resulting in robust performance. 

 

 
Figure 2. Dataset Image Samples. 

3.2. Data Preprocessing 

The use of preprocessing techniques is very beneficial for the development of strong computer vision 

algorithms and models. Preprocessing techniques allow for a more comprehensive method to prepare the 

images for further use by standardizing and augmenting them throughout training under varying image 

acquisition conditions. The preprocessing of images occurs in stages to ensure that the requirements of 

each type of modelling architecture are met while preserving the critical diagnostic information found in 

the image. Initially, the images will be subject to standardization procedures, which will include a resizing 

process to produce a standardized target spatial resolution size of 384/384 pixels, which is the resolution 

that provides the optimal balance between operational efficiency, computational performance and image 

detail. The resizing of images will be completed using the bicubic interpolation method to provide a more 

gradual and uniform transition from the original image size to the target resolution. Following the resizing, 

the pixel values of each image will be standardized by applying a normalization step based on removing 

the influence of colour format and/or colour space used to initially capture the images, as identified via 

colour space reference statistics provided by ImageNet (μ = [0.485, 0.456, 0.406]) and (σ = [0.229, 0.224, 

0.225]) respectively for the red, green and blue channels of each image.  

The normalization transformation is mathematically expressed as: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−μ

σ
                (1) 

Where x represents the original pixel values and 𝑥𝑛𝑜𝑟𝑚 represents the normalized values.  

Comprehensive data augmentation strategies are implemented to enhance model robustness and 

generalization capabilities. The augmentation pipeline includes geometric transformations such as random 

cropping with scale factorss ∈ [0.8,  1.0], horizontal and vertical flipping with probability𝑝𝑓𝑙𝑖𝑝 = 0.5, and 

rotation anglesθ ∈ [−20∘,  20∘]. Color space augmentations include brightness adjustmentβ ∈ [0.8,  1.2], 

contrast modification.   γ ∈ [0.8,  1.2], saturation variationδ ∈ [0.8,  1.2], and hue shifts ϵ ∈ [−0.1,  0.1] 

[66].  

The augmentation probability for each transformation is controlled by the parameter    𝑝𝑎𝑢𝑔 = 0.7, 

ensuring that augmentations are applied stochastically during training. The mathematical formulation for 

geometric transformations can be expressed as:  

𝑇𝑔𝑒𝑜(𝑥) = 𝑅θ ∘ 𝑆𝑠 ∘ 𝐹𝑝𝑓𝑙𝑖𝑝
(𝑥)              (2) 

Where 𝑅θ represents rotation, 𝑆𝑠 denotes scaling, and 𝐹𝑝𝑓𝑙𝑖𝑝
 indicates flipping operations. 
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Algorithm 1: Data Preprocessing for Skin Cancer Diagnosis  

Require: Raw images 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 

Ensure: Preprocessed and augmented images 𝑥̃ ∈ 𝑅𝟛𝟠𝟜×𝟛𝟠𝟜×𝟛 

1: Input: Images from ISIC-2019 and HAM10000 datasets 

2: Output: Preprocessed images 𝑥̃ 

3: for each image 𝑥 in datasets do 

4: Resize 𝑥 to 384 × 384 using bicubic interpolation: 
𝑥  ←  Resize(𝑥,  384,  384) 

5: Normalize pixel values using ImageNet statistics: 

      𝑥norm =
𝑥−𝜇

𝜎
, 𝜇 = [0.485,0.456,0.406], 𝜎 = [0.229,0.224,0.225] 

6: Apply stochastic augmentation with probability 𝑝aug = 0.7: 

• Geometric transformations: 𝑇geo(𝑥) = 𝑅𝜃 ∘ 𝑆𝑠 ∘ 𝐹𝑝flip
(𝑥) 

Where; 

– 𝑅𝜃: 𝜃 ∈ [−20∘, 20∘] 
– 𝑆𝑠: 𝑠 ∈ [0.8,1.0] 

– 𝐹𝑝flip
: horizontal/vertical flip with probability 𝑝flip = 0.5 

• Color augmentations: 

– Brightness 𝛽 ∈ [0.8,1.2] 

– Contrast 𝛾 ∈ [0.8,1.2] 

– Saturation 𝛿 ∈ [0.8,1.2] 

                                       Hue 𝜖 ∈ [−0.1,0.1] 

7: Store the preprocessed and augmented image 𝑥̃ 

8: end for 

9: Return: Preprocessed and augmented images 𝑥̃ 

In addition to the above preprocessing steps, a critical consideration involves the handling of the multi-

class nature of the original datasets. Both ISIC 2019 and HAM10000 datasets contain multiple diagnostic 

categories (eight for ISIC 2019 and seven for HAM10000). For the purposes of the current study, these 

categories were mapped to binary labels (“benign” vs. “malignant”) to streamline the classification task. 

However, it is important to note that this mapping is performed explicitly, and each original category is 

carefully assigned to one of the binary classes based on clinical guidelines and prior literature. The 

mapping ensures consistency across datasets and facilitates direct comparison during model training and 

evaluation. Following the binarization, the resulting class distributions were examined and recorded to 

ensure transparency and to highlight potential imbalances. For instance, some categories initially 

representing rare conditions could result in an under-representation of the corresponding binary class, 

potentially affecting model performance. Therefore, class distribution statistics were computed post-

mapping to guide subsequent training strategies, such as applying class-weighted loss functions or 

targeted data augmentation to mitigate imbalance effects. This step ensures that all images entering the 

model are standardized and comparable, while also providing a clear, reproducible framework for 

evaluation and reporting of performance metrics on both the original datasets and the derived binary 

classification task. 

3.3. Model Architecture 

The multi-tiered framework of the architecture utilizes self-supervised and supervised pre-training 

techniques, extraction of features via the use of multiple backbone networks, ensembling based on the 

extracted features, and creating classifications with an array of features to provide an optimal solution for 

extracting and identifying high-quality feature representations of a dataset. 

3.3.1. Self-Supervised Pretraining using SimCLR 

The self-supervised pretraining phase employs the SimCLR (Simple Framework for Contrastive 

Learning of Visual Representations) framework to learn robust feature representations from unlabeled 

dermoscopic images [19]. SimCLR learns representations by maximizing agreement between differently 

augmented views of the same data example through a contrastive loss function in the latent space. 
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For each input image 𝑥𝑖, the framework generates two augmented views (𝑥𝑖
(1)

, 𝑥𝑖
(2)

)  using the 

stochastic augmentation pipeline described in Section 3.2. These augmented pairs form positive examples, 

while all other images in the batch serve as negative examples. The contrastive learning objective 

encourages the model to produce similar representations for positive pairs while maximizing the distance 

between negative pairs.  

Each backbone architecture is modified by removing the classification head and adding a projection 

head g(⋅) consisting of a two-layer MLP with ReLU activation and batch normalization. The projection 

head maps the backbone feature representations ℎ𝑖 to a normalized 128-dimensional contrastive learning 

space 𝑧𝑖:  

𝑧𝑖 = 𝑔(ℎ𝑖) = 𝑊2 ⋅ ReLU(BN(𝑊1 ⋅ ℎ𝑖 + 𝑏1)) + 𝑏2          (3) 

where 𝑊1, 𝑊2 denotes the weight and 𝑏1, 𝑏2 are bias vectors.  

The contrastive loss function employed is theNT-Xent loss, which encourages positive pairs to have 

similar representations while pushing negative pairs apart. For a batch of N examples generating 2N 

augmented views, the loss for a positive pair (𝑧𝑖 , 𝑧𝑗) is computed as:  

ℒ𝒾,𝒿 = − log 
exp(sim(𝑧𝑖,𝑧𝑗) / τ)

∑ 1[𝑘≠𝑖] exp(sim(𝑧𝑖,𝑧𝑘) / τ)2𝑁
𝑘=1

            (4) 

where sim(𝑧𝑖 , 𝑧𝑗) =
𝑧𝑖

𝑇𝑧𝑗

||𝑧𝑖|| ||𝑧𝑗||
 represents cosine similarity, τ =  0.07 is the temperature parameter, and 

𝟏[𝒌≠𝒊] is an indicator function excluding the anchor sample.  

The total contrastive loss over the entire batch is: 

ℒ contrastive =
1

2𝑁
∑ ℒ𝒾,𝒿(𝒾)

2𝑁
𝑖=1              (5) 

where j(𝑖) indicates the positive pair index for sample i. 

 

Algorithm 2: SimCLR Self-Supervised Pretraining for Skin Cancer Diagnosis 

Require: 

• Unlabeled dataset 𝐷 = {𝑥𝑖}𝑖=1
𝑁  

• Data augmentations 𝒯 (e.g., crop, flip, jitter) 

• Encoder network 𝑓(⋅) and projection head 𝑔(⋅) 

• Temperature scaling factor 𝜏 

Ensure: Pretrained encoder 𝑓(⋅) with generalized representations 

1: Create two transformed versions for each 𝑥𝑖: 

𝑥𝑖
(1)̃

= 𝑡1(𝑥𝑖),  𝑥𝑖
(2)̃

= 𝑡2(𝑥𝑖),  where 𝑡1, 𝑡2 ∼ 𝒯 

2: Pass both views through the encoder: 

ℎ𝑖
(1)

= 𝑓 (𝑥𝑖
(1)̃

) ,  ℎ𝑖
(2)

= 𝑓 (𝑥𝑖
(2)̃

) 

3: Project features to contrastive latent space: 

𝑧𝑖
(1)

= 𝑔(ℎ𝑖
(1)

),  𝑧𝑖
(2)

= 𝑔(ℎ𝑖
(2)

) 

4: Compute cosine similarity between projections: 

sim(𝑧𝑖 , 𝑧𝑗) =
𝑧𝑖

⊤𝑧𝑗

||𝑧𝑖|| ⋅ ||𝑧𝑗||
 

5: Contrastive loss for a positive pair (𝒊, 𝒋): 

𝓛𝓲,𝓳 = − 𝐥𝐨𝐠 ∑ 𝐞𝐱𝐩 (
sim(𝒛𝒊, 𝒛𝒋)

𝝉
) 

6: Average the loss over all positive pairs: 

𝓛 =
𝟏

𝟐𝑵
∑[𝓛𝟐𝓴−𝟏,𝟐𝓴 + 𝓛𝟐𝓴,𝟐𝓴−𝟏]

𝑵

𝒌=𝟏

 

7: Update parameters of 𝒇(⋅) and 𝒈(⋅) using backpropagation (e.g., Adam) 

3.3.2. Supervised Fine-tuning with Dynamic Hyperparameter Optimization 

Following self-supervised pretraining, the learned feature representations are adapted for the specific 

skin cancer classification task through supervised fine-tuning. The pretrained backbone networks are 

loaded with their SimCLR weights, and the projection heads are replaced with task-specific classification 

heads designed for binary classification. 
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The classification head architecture consists of global average pooling followed by dropout 

regularization and a linear classifier. The mathematical formulation for the classification head is: 

𝑦̂ = softmax(𝑊𝑐 ⋅ Dropout(GAP(ℎ)) + 𝑏𝑐)           (6) 

where GAP(⋅) represents global average pooling, 𝑊𝑐 and 𝑏𝑐 are the classifier weights and bias, and 

the dropout probability 𝑝drop  is optimized during hyperparameter tuning.  The fine-tuning process 

employs weighted cross-entropy loss to address class imbalance: 

𝐿𝐶𝐸 = − ∑ 𝑤𝑦𝑖

𝑁
𝑖=1 log(𝑦̂𝑖,𝑦𝑖

)             (7)  

where 𝑤0 and 𝑤1 are class weights computed as 𝑤𝑗 =
𝑁

2⋅𝑁𝑗
 with 𝑁𝑗 being the number of samples in class 

𝑗 . Dynamic hyperparameter optimization is implemented using the Optuna framework with Tree-

structured Parzen Estimator (TPE) algorithms. The optimization space includes learning rates η ∈

[10−5, 10−2]  with logarithmic scaling, batch sizes 𝐵 ∈ {16, 32, 64, 128} , weight decay values λ ∈

[10−6, 10−2], and dropout rates 𝑝drop ∈ [0.1,0.5]. 

The optimization objective function is defined as: 

θ∗ = arg min
θ

𝐸 [𝐿val(θ)]              (8) 

where θ represents the hyperparameter vector and 𝐿val(θ) is the validation loss.  

Dynamic optimizer selection evaluates four different optimizers: AdamW with decoupled weight 

decay, RAdam with rectified adaptive learning rates [20], Ranger combining RAdam with Lookahead 

optimization, and SGD with momentum and Nesterov acceleration. The selection criterion is based on 

validation performance after initial training epochs. 

3.3.3. Feature Extraction from Fine-tuned Models 

After supervised fine-tuning, discriminative features are extracted from each of the three backbone 

architectures for subsequent ensemble learning. The feature extraction process removes the final 

classification layers while preserving the learned feature representations from the penultimate layers. 

For EfficientNetV2-L, features 𝑓𝐸 ∈ 𝑅𝟙𝟚𝟠𝟘  are extracted from the global average pooling layer. The 

Swin Transformer produces features 𝑓𝑆 ∈ 𝑅𝟙𝟝𝟛𝟞 from the final normalization layer before classification [21]. 

ConvNeXt generates features 𝑓𝐶 ∈ 𝑅𝟚𝟘𝟜𝟠 from the global average pooling layer preceding the classifier.  

The extracted features undergo standardization using z-score normalization to ensure consistent scales 

across different architectures: 

 

𝑓norm =
𝑓−μ𝑓

σ𝑓
                (9) 

where μ𝑓 and σ𝑓 are the mean and standard deviation computed from the training set features. 

3.3.4. Ensemble Learning through Feature Fusion and Meta-learning 

The ensemble learning component uses a two-stage process to be a sophisticated approach that 

combines feature-level fusion and meta-learning for the final classification using LightGBM as the classifier 

[22]. The early fusion approach is paired with a stacked ensemble methodology that takes advantage of the 

complementary strengths of the three backbone architectures in order to maximize performance. 

Feature-level fusion is implemented through concatenation of the standardized feature vectors: 

𝑓fused = [𝑓𝐸,norm ⊕ 𝑓𝑆,norm ⊕ 𝑓𝐶,norm] ∈ 𝑅𝟜𝟠𝟞𝟜              (10) 

where ⊕ denotes concatenation operation and the resulting fused feature vector has dimensionality 

𝑑fused = 1280 + 1536 + 2048 = 4864.  

A meta-learner utilizing LightGBM, which implements gradient boosting using advanced 

optimization methods, processes these combined features. By utilizing a combination of leaf-flourishing 

tree growth and histogram-based algorithms, LightGBM is able to provide highly efficient training options 

for models formed from data that has been pre-combined into features. The mathematical formulation for 

the gradient boosting process is: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + γ𝑚ℎ𝑚(𝑥)                         (11) 

where 𝐹𝑚(𝑥) is the ensemble prediction after mm m iterations, ℎ𝑚(𝑥) is the m-th weak learner, and 

γ𝑚 is the step size determined through line search.  

The objective function for LightGBM optimization includes both loss and regularization terms: 

𝐿𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 = ∑ 𝑙(𝑦𝑖 , 𝐹𝑚(𝑥𝑖))𝑁
𝑖=1 + ∑ Ω(ℎ𝑗)𝑚

𝑗=1              (13) 
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where 𝑙(⋅) is the loss function and Ω(⋅) represents regularization terms controlling model complexity.  

Hyperparameter optimization for LightGBM explores parameters including number of leaves 𝐿 ∈

[31, 511], learning rate η𝑔𝑏𝑚 ∈ [0.01, 0.3], maximum depth 𝑑𝑚𝑎𝑥 ∈ [3, 15], feature fraction 𝑓frac ∈ [0.6, 1.0], 

and regularization parameters λ𝐿1, λ𝐿2 ∈ [0, 10]. 

 

Algorithm 3: LightGBM Classification for Skin Cancer Diagnosis 

Require: 

• Labeled dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁   

• Number of boosting rounds 𝑇 

• Learning rate 𝜂 

• Maximum tree depth 𝑑 

• Loss function 𝐿(𝑦, 𝑦̂) 

Ensure: Trained LightGBM classifier 𝐹𝑇(𝑥) 

1: Initialize the model: 

𝐹0(𝑥) = arg min
𝑐

∑ 𝐿(𝑦𝑖 , 𝑐)

𝑁

𝑖=1

 

2:  for 𝑡 =  1 to 𝑇 do 

3: Compute gradients and hessians for each xi: 

𝑔𝑖 =
𝜕𝐿(𝑦𝑖 , 𝐹𝑡−1(𝑥𝑖))

𝜕𝐹𝑡−1(𝑥𝑖)
, ℎ𝑖 =

𝜕2𝐿(𝑦𝑖 , 𝐹𝑡−1(𝑥𝑖))

𝜕𝐹𝑡−1(𝑥𝑖)2
 

4: Train regression tree ℎ𝑡(𝑥) using (𝑔𝑖 , ℎ𝑖): 

• Histogram-based split finding 

• Leaf-wise tree growth 

• Gradient-based One-Side Sampling (GOSS) 

• Depth limited to 𝑑 

5:  Update the ensemble: 

 
𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂 ⋅ ℎ𝑡(𝑥) 

6: end for 

7: Output the final model: 

 
𝑦̂ = 𝐹𝑇(𝑥) 

3.3.5. Classification Output 

The final classification output combines the probabilistic predictions from the LightGBM meta-learner 

with confidence estimation mechanisms. The model produces binary classification probabilities 

𝑃( 𝑦 = 1 ∣∣ 𝑥 ) and 𝑃( 𝑦 = 0 ∣∣ 𝑥 ) for malignant and benign classes respectively.  

The final prediction is determined by: 

𝑦̂ = arg max
𝑐∈{0,1}

𝑃 ( 𝑦 = 𝑐 ∣∣ 𝑓fused )               (14) 

Confidence scores are computed using prediction entropy: 

Confidence = 1 − 𝐻(𝑃) = 1 + ∑ 𝑃( 𝑦 = 𝑐 ∣∣ 𝑥 )𝑐∈{0,1} log 𝑃 ( 𝑦 = 𝑐 ∣∣ 𝑥 )             (15) 

where 𝐻(𝑃) represents the entropy of the prediction distribution. 

3.4. Explainable AI (XAI) Implementation 

Explainable AI has integrated several techniques to enable comprehensive insight into how the model 

is making its decisions. In order to fulfil the requirement for interpretability in clinical applications, a multi-

modal approach to explainability combines both visual explanations and an overall quantitative measure 

of the importance of each feature within the model. Through this combination of both visual and 

quantitative metrics, clinical users can improve their clinical understanding of and build their trust in the 

model output. Gradient-weighted Class Activation Mapping (Grad-CAM) is implemented for CNN-based 

architectures (EfficientNetV2-L and ConvNeXt) to generate visual explanations. Grad-CAM computes the 
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gradient of the target class score with respect to feature maps in the final convolutional layer: 

α𝑘
𝑐 =

1

𝑍
∑ ∑

∂𝑦𝑐

∂𝐴𝑖,𝑗
𝑘𝑗𝑖                   (16) 

where α𝑘
𝑐  denotes the importance weight for feature map 𝑘 and class 𝑐 , 𝐴𝑖,𝑗

𝑘  is the activation at 

spatial location (𝑖, 𝑗) in feature map 𝑘, and 𝑍 is the factor of normalization. 

𝐿Grad-CAM
𝑐 = ReLU(∑ α𝑘

𝑐 𝐴𝑘
𝑘 )                (17)  

For the Swin Transformer architecture, attention visualization leverages the multi-head self-attention 

mechanism. The attention weights from the final transformer block are aggregated across heads and spatial 

dimensions: 

𝐴avg =
1

𝐻
∑ 𝐴(ℎ)𝐻

ℎ=1                  (18)  

where 𝐻 is the number of attention heads and 𝐴(ℎ) represents the attention matrix for head ℎ.  

SHAP (SHapley Additive exPlanations) analysis is applied to the LightGBM meta-learner to quantify 

feature contributions. SHAP values satisfy the efficiency property: 

∑ ϕ𝑖
𝑑fused
𝑖=1 = 𝑓(𝑥) − 𝐸[𝑓(𝑋)]                (19) 

where ϕ𝑖 represents the SHAP value for feature 𝑖, and 𝑓(𝑥) is the model prediction. 

 

4. Experiments and Results 

This section presents a detailed analysis of the experimental findings derived from an extensive series 

of evaluations conducted to assess the performance and clinical utility of the proposed diagnostic 

framework. The system’s effectiveness was rigorously tested across three benchmark dermoscopic datasets 

obtained from previously published studies, enabling a comprehensive comparison of its diagnostic 

accuracy, robustness, and generalization capability.All experiments were conducted in a computationally 

intensive environment using NVIDIA RTX 4090 Graphics Processing Units (GPUs) to maximize training 

and evaluation efficiency. The framework was implemented in PyTorch 2.0 with CUDA 11.8 support, 

enabling full GPU acceleration. Mixed precision training was employed to reduce memory overhead and 

accelerate training while maintaining numerical stability. 

Hyperparameter optimization was performed using Optuna. After 100 trials with median pruning, the 

optimal values identified for the final model were: learning rate = 1e-4, batch size = 32, weight decay = 1e-

5, and dropout = 0.3. Cross-entropy loss on the validation set was used as the objective metric, and 

validation splits guided the hyperparameter selection. The data preprocessing and augmentation pipeline 

was executed with the following optimal settings: images were resized to 384×384 pixels using bicubic 

interpolation and normalized with ImageNet statistics (μ = [0.485, 0.456, and 0.406], σ = [0.229, 0.224, 0.225]). 

Geometric augmentations included random cropping with scale s = 0.9, horizontal and vertical flipping 

with probability p_flip = 0.5, and rotation θ = ±15°. Color augmentations included brightness β = 1.1, 

contrast γ = 1.0, saturation δ = 1.05, and hue shift ε = 0.05. All augmentations were applied stochastically 

with probability p_aug = 0.7.These optimal settings were used consistently across all datasets to ensure 

reproducibility and maximize model performance, and all reported metrics reflect the results obtained with 

this configuration. 

The proposed skin cancer diagnostic model was evaluated on both the ISIC 2019 and HAM10000 

datasets using multiple performance metrics, including Accuracy, Precision, Recall, F1-score, Specificity, 

and ROC-AUC, to provide a comprehensive assessment of its diagnostic capability. On the ISIC dataset, 

the model achieved an accuracy of 93.66% (95% CI: 92.10–95.12%), precision of 91.12%, recall of 91.97%, F1-

score of 91.54%, specificity of 94.21%, and ROC-AUC of 0.967. Similarly, on the HAM10000 dataset, the 

model obtained an accuracy of 95.34% (95% CI: 94.10–96.58%), precision of 93.98%, recall of 94.56%, F1-

score of 94.27%, specificity of 96.12%, and an ROC-AUC of 0.981.Bootstrap resampling with 1,000 iterations 

was used to compute the confidence intervals, ensuring that the reported metrics reflect their statistical 

reliability. Threshold selection for binary classification was determined using the Youden’s J statistic to 

balance sensitivity and specificity. The results indicate that the inclusion of self-supervised pretraining, 

multi-architecture ensemble learning, and explainable AI techniques not only improves overall accuracy 

but also maintains high sensitivity and specificity, highlighting the robustness and generalizability of the 

framework across diverse dermoscopic datasets. 

In another experiment, confusion matrices were utilized to assess the effectiveness of the proposed 

framework in accurately classifying benign and malignant skin lesions, as shown in Figure 5. The model 
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demonstrated a notable average accuracy of 94.50% across both ISIC and HAM10000 datasets, highlighting 

its strong capability to distinguish between different types of skin lesions with high reliability. 

 
Figure 3. Proposed Model results in terms of Accuray, Precision and Recall. 

 

 

 

ISIC 2019 Dataset HAM10000 Dataset 

Figure 4. Confusion Metrics of ISIC 2019 and HAM10000 Datasets 

Grad-CAM and attention visualizations were generated for sample dermoscopic images to assess the 

clinical relevance of the explainability modules. SHAP values from the meta-learner were analyzed to 

interpret the contribution of individual features in ensemble predictions. The highlighted regions were 

compared with lesion segmentation masks using the Dice coefficient, achieving an average overlap of 0.82 

± 0.05, indicating that the model focuses on clinically relevant areas. Example heatmaps and attention 

overlays are shown in Figure X. Failure cases were also examined, highlighting instances where the model 

attended to non-lesion regions, providing insight into limitations and areas for future improvement. These 

results demonstrate that the proposed framework is both accurate and interpretable in a clinically 

meaningful manner. 

For comparative analysis, three baseline approaches were selected from published studies to provide 

a fair reference: Baseline 1 [23] proposed a Computer-Assisted Diagnosis (CAD) framework using a 

lightweight CNN architecture for early detection of skin diseases; Baseline 2 [24] evaluated skin lesion 

classification using four CNN-based architectures—DenseNet, MobileNetV2, Xception, and 

InceptionResNetV2—assessing their effectiveness in a comprehensive framework; Baseline 3 [25] 

employed a combination of CNNs, Residual Networks, and Xception models to detect skin diseases early, 

emphasizing both accuracy and robustness. All baseline models were re-implemented under identical 

experimental conditions, including the same dataset splits, preprocessing pipeline, and augmentation 

strategies used for the proposed framework. Each model was trained and evaluated over five independent 

runs to account for stochastic variability, and the mean ± standard deviation of the performance metrics 

was recorded. 
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The proposed framework achieved an accuracy of 94.5% ± 0.62%, outperforming Baseline 1 (88.45% ± 

0.75%), Baseline 2 (90.15% ± 0.68%), and Baseline 3 (92.98% ± 0.55%). The precision of the proposed model 

was 92.55% ± 0.71%, compared with 86.45% ± 0.80%, 88.62% ± 0.72%, and 91.61% ± 0.60% for the respective 

baselines, while the recall reached 93.26% ± 0.65%, exceeding Baseline 1 (87.45% ± 0.78%), Baseline 2 (89.22% 

± 0.70%), and Baseline 3 (91.45% ± 0.59%).These improvements are attributable to the inclusion of self-

supervised pretraining (SimCLR) for robust feature representation, multi-architecture ensemble learning 

(EfficientNetV2-L, Swin Transformer, ConvNeXt) to reduce model bias, and explainable AI methods 

(Grad-CAM, SHAP) to focus on clinically relevant regions for accurate lesion localization. By controlling 

for experimental conditions and reporting variance across runs, the observed performance gains reflect 

methodological superiority rather than differences in setup. 

 
Figure 5. Comparative Analysis of Proposed Model with Baselines. 

To evaluate the contribution of each component in the proposed framework, an ablation study was 

conducted on both ISIC 2019 and HAM10000 datasets. The study systematically removed or modified key 

components, including self-supervised pretraining (SimCLR), the multi-architecture ensemble, and 

explainable AI modules (Grad-CAM and SHAP), and measured the resulting impact on classification 

performance. This approach allows a quantitative assessment of how each module contributes to the 

overall effectiveness of the framework. 

Table 1. Model evaluation and results 

Model 

Variant 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Full 

Framework 
94.92 ± 0.60 93.27 ± 0.68 

93.91 

± 0.63 

93.59 ± 

0.65 

Without 

SimCLR 
91.85 ± 0.65 90.05 ± 0.72 

91.25 

± 0.68 

90.65 ± 

0.70 

Single 

Backbone 

(No 

Ensemble) 

92.55 ± 0.62 90.85 ± 0.68 
91.60 

± 0.64 

91.22 ± 

0.66 

Without 

Explainable 

AI 

93.80 ± 0.61 92.30 ± 0.67 
92.75 

± 0.64 

92.52 ± 

0.65 

The results indicate that the full proposed framework consistently outperforms all ablated variants, 

with the highest average accuracy (94.92%) and F1-score (93.59%). Removing self-supervised pretraining 

(SimCLR) causes the largest drop in performance, highlighting its critical role in learning robust feature 

representations from unlabeled dermoscopic images. The multi-architecture ensemble contributes 

significantly by capturing complementary features from different backbones, while the explainable AI 
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modules further enhance precision and recall by focusing the model on clinically relevant regions. These 

findings confirm that the superior performance of the proposed framework is the result of the combined 

contribution of all its components. 

 

5. Conclusions 

This study proposed a hybrid deep learning framework for skin cancer diagnosis that integrates self-

supervised pretraining, multi-architecture ensemble learning, and explainable artificial intelligence (XAI) 

techniques. The framework leverages SimCLR-based contrastive learning to generate rich and 

discriminative feature representations from large unlabeled dermoscopic datasets, which are subsequently 

fine-tuned through supervised learning across three advanced architectures—EfficientNetV2-L, Swin 

Transformer, and ConvNeXt. A meta-learning classifier based on LightGBM fuses the features from these 

architectures, achieving enhanced diagnostic performance. Experimental evaluations conducted on 

benchmark datasets (ISIC and HAM10000) demonstrated that the proposed framework significantly 

outperformed existing baseline models. These results confirm the model’s robustness, sensitivity, and 

reliability in distinguishing between benign and malignant skin lesions. Moreover, the integration of 

explainable AI methods such as Grad-CAM and SHAP provided meaningful visual and feature-level 

explanations, enhancing model interpretability and clinical trust—an essential component for real-world 

medical applications. Future research will focus on integrating multimodal data (e.g., patient metadata and 

histopathology images), developing lightweight real-time versions for resource-limited settings, and 

enhancing model explainability and uncertainty estimation to improve clinical reliability and trust. 
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