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Abstract: Skin cancer is one of the most common types of malignancies around the world, and the
ability to detect skin cancers in an early stage is crucial for improving overall patient outcomes. This
study introduces a hybrid deep learning framework that utilizes self-supervised pretraining, multi-
architecture ensemble learning, and explainable Al approaches to enable accurate and interpretable
skin cancer diagnosis. This framework uses SimCLR-based contrastive learning techniques to
generate powerful feature representations from large data sets of unlabeled images of
dermatoscopic images before implementing either supervised fine-tuning processes or feature-level
fusion processes on three different types of architectures (EfficientNetV2-L, Swin Transformer, and
ConvNeXt). In order to classify patients using the features derived from the different architectures,
a meta-learning classifying component based on LightGBM is built into the model and provides
explainability through the Grad-CAM and SHAP explainable AI methods. The results of the
experiments performed with benchmark datasets (ISIC, and HAM10000) demonstrate the proposed
method outperformed previously established baseline models by a wide margin, achieving 94.5%
accuracy, 92.55% precision, and 93.26% recall, providing evidence of the robustness, high sensitivity,
and reliability of the proposed method in the early detection of skin cancer.

Keywords: Skin Cancer Diagnosis; Deep Learning; Self-Supervised Learning; Multi-Architecture
Ensemble; Explainable Al

1. Introduction

There are many cases of skin cancer in the world, Non-Melanoma Skin cancer is the most common
cancer in the World, estimated at 1,234,533 cases of Non-Melanoma Skin Cancer and 69,416 deaths from
the disease [1]. An estimated 330,000 new cases of melanoma were diagnosed in the world in 2022 and
related deaths totaled almost 60,000 [2]. Even with considerable improvements in various treatments, early
detection of Skin Cancer is still most critical determining factor for how well patients are able to survive
and recover from their illness. With this urgent need for Early Detection, we can expect that as the demand
for better diagnostic approaches continues to grow, current limitations associated with Traditional
Methods will need to be overcome with more advanced methods [4].

Traditional dermatological examination relies heavily on visual inspection and clinical expertise, often
supplemented by dermoscopy for enhanced visualization of skin structures [5]. However, this
conventional approach faces substantial challenges including inter-observer variability, diagnostic
subjectivity, and the limited availability of specialized expertise, particularly in resource-constrained
healthcare settings. These diagnostic limitations have created pressing demands for objective, accurate,
and accessible tools that can augment clinical decision-making while reducing dependency on subjective
interpretation [6]. The evolution toward computational solutions represents a natural progression in
addressing these clinical challenges.

Artificial Intelligence (AI) and Deep Learning (DL) technologies have drastically changed how we use
medical imaging by providing the ability to improve diagnostic accuracy through automation [7]. By using
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tendon-like models (Deep Learning algorithms) that are comparable in accuracy to board-certified

dermatologists, DL will allow us to better classify skin lesions accurately (benign vs malignant) than

humans will most likely produce. Such algorithms use large numbers of imaging (deep imaging) datasets
to identify complex patterns that may not immediately be apparent to a human eye; thus, making them an
opportunity to improve inaccuracy [8]. The transition of automated methods from traditional

Convolutional Neural Networks (CNNs) to more advanced architectures of CNN has shown further

opportunity to improve our current capabilities in dermoscopy applications.

Emerging methodologies such as Vision Transformers and Hybrid Models in computer vision are
promising methods to further advance and/or automate some of the dermoscopy applications we see today
[9]. The advent of novel Al methodologies will continue to create advantages for working with
Dermoscopy, yet several limitations remain, such as data scarcity and model interpretability. Most Al-
driven systems currently continue to primarily utilize single-model (single architecture) methodologies,
which do not encompass the entire feature representation spectrum needed for comprehensive lesion
analysis. Because of this limitation, the creation of more sophisticated ensemble methodologies
incorporating multiple complementary architectures continues to be needed.

The emergence of Self-Supervised Learning (SSL) has provided at least one potential solution to the
issue of being able to build ML systems using SSL, thus, providing a means for learning to generalize
features from a dataset where labeled images do not exist. For example, the SimCLR Framework has
produced excellent performance levels associated with learning to generalize features from unlabeled
images by generating augmented views of images and distinguishing between positive and negative image
pairs (comparing). Thus, by allowing ML systems to learn robust feature representations without needing
explicit metadata associated with the image (explicit annotations), SSL is a methodology that addresses
some of the Data Limitation Challenges of the current Supervised Learning methodologies. By combining
SSL techniques of pretraining with Supervised Fine-Tuning, we can now maximize the usefulness of the
medical imaging dataset.

Combining multiple complementary architectures through an Ensemble Learning approach has
proven to be another key area of advancement in improving the diagnostic accuracy of the upcoming Al-
driven diagnostic systems beyond what a single architecture can currently produce. However, the biggest
deterrent to using Al within the clinical/healthcare arena is the general lack of Identifiable/model
Explainability. Clinicians need an explanation of how a model arrived at its conclusion(s) so that trust can
be established in these new automated systems. To resolve this issue, the incorporation of Explainable Al
techniques takes this need into consideration. For example, Grad-CAM, Shapley Value Explanation, and
Attention Mechanisms allow clinicians to visually understand how AI makes decisions to help them
establish trust in Al systems within the clinical environment.

The proposed research will investigate these multi-dimensional limitations within an integrated
framework that effectively synergistically integrates Self-Supervised Pretraining, multi-resolution
Ensemble Architecture strategies, and Advanced Explainable AI (XAI) Techniques in order to develop a
clinically viable AI diagnostic system. This Hybrid Model will provide the opportunity to Learn Robust
Feature Representations from Unlabeled Dermoscopy Data using Contrastive Learning techniques
(SimCLR) and learn to utilize Supervised Fine-Tuning with Dynamic Hyperparameter Optimization
techniques (Optuna). These Hybrid Models will be utilized via a combination of Incremental/Feature Level
Fusion, and Meta Learning approaches, along with Regressor-based Ensembles (Example: LightGBM), to
arrive at a Final Classification.

The major contributions of this research include:

* Integration of self-supervised pretraining using SImCLR with supervised fine-tuning to effectively
leverage both labeled and unlabeled dermoscopic images, addressing the critical data scarcity problem
in medical imaging.

¢ Development of a novel multi-architecture ensemble approach that combines EfficientNetV2-L, Swin
Transformer, and ConvNeXt architectures through advanced feature-level fusion and meta-learning
using LightGBM for enhanced diagnostic accuracy.

¢ Implementation of comprehensive explainable Al framework integrating Grad-CAM, SHAP, and
attention visualization to provide clinical interpretability essential for trust-building and adoption in
dermatological practice.
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The remainder of this paper is organized as follows: The "Literature Review" discusses the literature-
based methods of diagnosing skin cancer that have been developed using various techniques. The use of
materials and techniques used for the development of our model is presented in the "Proposed
Methodology" where we describe the processes used in the development of our model along with the
results obtained from our model discussed in "Results". Finally, the "Conclusion" section presents the
conclusions drawn from the results of this study as well as directions for future work.

2. Literature Review

In the past decade, dermatologists have seen a dramatic increase in how artificial intelligence can help
identify and differentiate skin cancer. The state of the art in automated detection and classification of skin
cancer via the use of machine learning techniques based on deep learning models has achieved
unprecedented success. This article is a thorough review of the literature and will explore how
computational methods have evolved over time in the diagnosis of skin cancer, with a focus on self-
supervised learning techniques, ensemble-based systems, transfer learning applications, and explainable
Al techniques that form the basis of current research in this area.

One of the most exciting developments in self-supervised learning techniques is that they represent a
major advancement in the field of medical image analysis. For many years, dermatologists and other
medical practitioners have been challenged by the lack of sufficient labeled data to create robust diagnostic
systems [11]. The application of self-supervised pre-training followed by a supervised fine-tuning
approach has been shown to have tremendous success in the area of natural image classification and has
also begun to be applied in the area of medical images [12]. Recent systematic reviews of the literature have
detailed the many ways self-supervised learning could contribute to the development of robust medical
imaging models by allowing for the analysis of vast amounts of medical data without the use of labeled
data.

The SIimCLR framework has generated interest among medical imaging practitioners, based on its
success in developing generalized feature representations that can be used across a wide variety of medical
imaging tasks [13]. Azizi et al. demonstrated the superiority of using a self-supervised pre-training
approach on medical images over the use of ImageNet as a pre-training source for the training of medical
image classification models, particularly in the field of dermatology [14]. They demonstrated that the
domain of study was more restricted with the use of domain-specific self-supervised pre-training, resulting
in improved performance on downstream classification tasks because the domain of study was closer to
the source.

Over the past several years, many deep learning architectures have been implemented and have
advanced the development of skin cancer detection systems, each possessing distinct network architectures
that have advantages in the processing of dermoscopic images. Specifically, convolutional neural networks
have historically ruled the field of medical image analysis. Many of the traditional network architectures,
including VGGNet, GoogleNet, and ResNet, are employed for the classification of skin lesions [15]. These
architectures have established benchmarks for performance and laid the groundwork for the development
of more recent and sophisticated approaches to the classification of skin images. In particular, the
introduction of the EfficientNet architecture has provided a considerable advancement in the development
of a network that is capable of generating a balanced trade-off between the accuracy of skin cancer
diagnosis and the time and computational resources necessary for training the model [16].

Although many advances have been made in Al applications for skin cancer diagnosis, some of the
limitations and fault lines present in current literature regarding the potential applicability of Al to skin
cancer diagnosis are still unresolved. For example, the vast majority of existing systems for skin cancer
diagnosis rely on single architecture models and/or simple ensemble techniques to evaluate skin lesions,
resulting in a missed opportunity to capitalize on the complementary characteristics that multiple different
architectural paradigms possess. Additionally, there has been limited research conducted with respect to
the application of self-supervised pre-training techniques in dermatological applications. As a result, there
remains an abundance of unlabeled skin imaging data that could be used to improve feature learning
through the use of self-supervised learning. Furthermore, the lack of comprehensive XAl (explainable
artificial intelligence) frameworks that are capable of integrating the many techniques related to XAI
severely limits the clinical adoption of Al for skin cancer diagnosis. Moreover, the use of only single
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technique-based XAI frameworks limits the depth and breadth of the interpretability of the model. Finally,
the integration of DPHO (dynamic hyperparameter optimization) with multi-architecture ensemble
learning has attracted relatively little research attention in published literature and represents a significant
research gap.

3. Materials and Methods

This research proposes an integrated system of Hybrid Deep Transfer (HDT) learning for improved
Skin Cancer Diagnostic (SCD) capabilities utilizing Self-Supervised Pretraining, Ensemble Learning and
Explainable Artificial Intelligence (EAI). The methodology includes pre-training using the SimCLR
algorithm to extract image representations from extensive collections of unlabeled dermoscopy images.
The HDT Model then employs end-to-end training, whereby a model will use the features extracted from
EfficientNetV2-L, Swin Transformer and ConvNeXt networks, combine these into a combined
representation and predict the skin pathologies via an ensemble classification model specifically designed
for skin pathology detection, LightGBM. The integration of three networks allows for increased variability
in image representations, reduces bias occurring from a single model and enhances the overall accuracy of
diagnosing pathology. Finally, this framework applies explainable Al (EAI) techniques, utilizing
techniques such as Grad-CAM and SHAP to generate interpretable predictions, facilitate decisions based
on clinical reliability and ensure the model can provide transparency in the automated detection of skin

cancer.
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Figure 1. Proposed Model

3.1. Dataset Description

Two benchmark datasets were selected to comprehensively evaluate the methodology: the
International Skin Imaging Collaboration (ISIC) 2019 database and the HAM10000 database. The ISIC 2019
database consists of 25,331 dermatoscopic photographs of skin abnormalities. Each photograph is labelled
by an expert to assist in the determination of whether the skin abnormality is malignant or benign. There
are eight diagnostic categories represented within the ISIC 2019 database: melanoma, melanocytic nevi,
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basal cell carcinoma, actinic keratoses, benign keratoses, dermatofibromas, vascular lesions, and squamous
cell carcinomas [17]. The HAM10000 database adds another 10,015 images of pigmented skin lesions that
also came from dermatoscopic imaging. The HAM10000 database contains images across seven skin lesion
categories [18]. Additionally, the HAM10000 database contains several complementary features: diverse
imaging conditions, patient demographics, and varying lesion appearances that enhance the overall
robustness of the training process. The two datasets combined yield a total of 35,346 images that may be
used to train and evaluate models on a diverse set of features, resulting in robust performance.

Dataset 1: ISIC-2019

Figure 2. Dataset Image Samples.

3.2. Data Preprocessing

The use of preprocessing techniques is very beneficial for the development of strong computer vision
algorithms and models. Preprocessing techniques allow for a more comprehensive method to prepare the
images for further use by standardizing and augmenting them throughout training under varying image
acquisition conditions. The preprocessing of images occurs in stages to ensure that the requirements of
each type of modelling architecture are met while preserving the critical diagnostic information found in
the image. Initially, the images will be subject to standardization procedures, which will include a resizing
process to produce a standardized target spatial resolution size of 384/384 pixels, which is the resolution
that provides the optimal balance between operational efficiency, computational performance and image
detail. The resizing of images will be completed using the bicubic interpolation method to provide a more
gradual and uniform transition from the original image size to the target resolution. Following the resizing,
the pixel values of each image will be standardized by applying a normalization step based on removing
the influence of colour format and/or colour space used to initially capture the images, as identified via
colour space reference statistics provided by ImageNet (i = [0.485, 0.456, 0.406]) and (o = [0.229, 0.224,
0.225]) respectively for the red, green and blue channels of each image.
The normalization transformation is mathematically expressed as:

Xnorm = % (1)
Where x represents the original pixel values and x,,,,, represents the normalized values.
Comprehensive data augmentation strategies are implemented to enhance model robustness and

generalization capabilities. The augmentation pipeline includes geometric transformations such as random

cropping with scale factorss € [0.8, 1.0], horizontal and vertical flipping with probabilityps;, = 0.5, and

rotation angles® € [-20°, 20°]. Color space augmentations include brightness adjustmentf € [0.8, 1.2],

contrast modification.  y € [0.8, 1.2], saturation variation$ € [0.8, 1.2], and hue shifts € € [-0.1, 0.1]

[66].

The augmentation probability for each transformation is controlled by the parameter Paug = 0.7,
ensuring that augmentations are applied stochastically during training. The mathematical formulation for
geometric transformations can be expressed as:

Tgeo (x) =RgoSgo prlip(x) (2)

Where Rq represents rotation, S; denotes scaling, and F, = indicates flipping operations.
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Algorithm 1: Data Preprocessing for Skin Cancer Diagnosis
RH*XWXC

Require: Raw images x €
Ensure: Preprocessed and augmented images % € R384x384x3
1: Input: Images from ISIC-2019 and HAM10000 datasets
2: Output: Preprocessed images X
3: for each image x in datasets do
4: Resize x to 384 x384 using bicubic interpolation:
x « Resize(x, 384, 384)
5: Normalize pixel values using ImageNet statistics:
Xoorm = =, pu = [0.485,0.456,0.406], & = [0.229,0.224,0.225]
6: Apply stochastic augmentation with probability p,,; = 0.7:
e Geometric transformations: Te,(x) = Rg © Sg © Fpmp(x)
Where;
— Ry:0 € [-20°,20°]
- S5 €[0.8,1.0]
- Fpﬂip: horizontal/vertical flip with probability pg;, = 0.5
e Color augmentations:
— Brightness f €[0.8,1.2]
— Contrast y € [0.8,1.2]
— Saturation § € [0.8,1.2]
Hue € € [-0.1,0.1]
7: Store the preprocessed and augmented image *
8: end for
9: Return: Preprocessed and augmented images ¥

In addition to the above preprocessing steps, a critical consideration involves the handling of the multi-
class nature of the original datasets. Both ISIC 2019 and HAM10000 datasets contain multiple diagnostic
categories (eight for ISIC 2019 and seven for HAM10000). For the purposes of the current study, these
categories were mapped to binary labels (“benign” vs. “malignant”) to streamline the classification task.
However, it is important to note that this mapping is performed explicitly, and each original category is
carefully assigned to one of the binary classes based on clinical guidelines and prior literature. The
mapping ensures consistency across datasets and facilitates direct comparison during model training and
evaluation. Following the binarization, the resulting class distributions were examined and recorded to
ensure transparency and to highlight potential imbalances. For instance, some categories initially
representing rare conditions could result in an under-representation of the corresponding binary class,
potentially affecting model performance. Therefore, class distribution statistics were computed post-
mapping to guide subsequent training strategies, such as applying class-weighted loss functions or
targeted data augmentation to mitigate imbalance effects. This step ensures that all images entering the
model are standardized and comparable, while also providing a clear, reproducible framework for
evaluation and reporting of performance metrics on both the original datasets and the derived binary
classification task.

3.3. Model Architecture

The multi-tiered framework of the architecture utilizes self-supervised and supervised pre-training
techniques, extraction of features via the use of multiple backbone networks, ensembling based on the
extracted features, and creating classifications with an array of features to provide an optimal solution for
extracting and identifying high-quality feature representations of a dataset.

3.3.1.  Self-Supervised Pretraining using SimCLR

The self-supervised pretraining phase employs the SimCLR (Simple Framework for Contrastive
Learning of Visual Representations) framework to learn robust feature representations from unlabeled
dermoscopic images [19]. SImCLR learns representations by maximizing agreement between differently
augmented views of the same data example through a contrastive loss function in the latent space.
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For each input image x;, the framework generates two augmented views (xi(l),xi(z)) using the
stochastic augmentation pipeline described in Section 3.2. These augmented pairs form positive examples,
while all other images in the batch serve as negative examples. The contrastive learning objective
encourages the model to produce similar representations for positive pairs while maximizing the distance
between negative pairs.

Each backbone architecture is modified by removing the classification head and adding a projection
head g(-) consisting of a two-layer MLP with ReLU activation and batch normalization. The projection
head maps the backbone feature representations h; to a normalized 128-dimensional contrastive learning
space z;:

z; = g(h;) = W, - ReLU(BN(W, - h; + b,)) + b, (3)
where W;, W, denotes the weight and by, b, are bias vectors.

The contrastive loss function employed is theNT-Xent loss, which encourages positive pairs to have
similar representations while pushing negative pairs apart. For a batch of N examples generating 2N
augmented views, the loss for a positive pair (z;,z;) is computed as:

exp(sim(zy,z;) / 1)

Zilzl pxi] €Xp(sim(zy,2g) / ) (4)
Z;I‘Zj
lzill1zjll
1k is an indicator function excluding the anchor sample.

L’i,j = — log

where sim(z;,z;) = represents cosine similarity, T = 0.07 is the temperature parameter, and
The total contrastive loss over the entire batch is:
. 1
L contrastive = 52?2’1 Li i (5)

where j(i) indicates the positive pair index for sample i.

Algorithm 2: SimCLR Self-Supervised Pretraining for Skin Cancer Diagnosis
Require:
* Unlabeled dataset D = {x;},
* Data augmentations T (e.g., crop, flip, jitter)

* Encoder network f(-) and projection head g(-)

* Temperature scaling factor
Ensure: Pretrained encoder f(-) with generalized representations
1: Create two transformed versions for each x;:

xl(l) = t1(x), xl.(Z) =t,(x;), wheret;, t; ~T

2: Pass both views through the encoder:
1 a 2 e
B = (xP), h? =r(x?)
Project features to contrastive latent space:
1 2 2
0= g(1), A2 = o)
4: Compute cosine similarity between projections:
ZiTZj
IEAIRNIEA]
5: Contrastive loss for a positive pair (i, j):

1o 105 exp(A2220)

: Average the loss over all positive pairs:

W

sim(zl-, Zj) =

o))

N
1
L= ﬁkzl[ﬁw—mk + Lopop1]

7: Update parameters of f(-) and g(-) using backpropagation (e.g.,, Adam)

3.3.2.  Supervised Fine-tuning with Dynamic Hyperparameter Optimization

Following self-supervised pretraining, the learned feature representations are adapted for the specific
skin cancer classification task through supervised fine-tuning. The pretrained backbone networks are
loaded with their SimCLR weights, and the projection heads are replaced with task-specific classification
heads designed for binary classification.
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The classification head architecture consists of global average pooling followed by dropout
regularization and a linear classifier. The mathematical formulation for the classification head is:
y= softmax(WC -Dropout(GAP(h)) + bc) (6)

where GAP(-) represents global average pooling, W, and b, are the classifier weights and bias, and
the dropout probability pyrp is optimized during hyperparameter tuning. The fine-tuning process
employs weighted cross-entropy loss to address class imbalance:

Leg = — Z?Izl Wy, log(.’j}i,yi) (7)
where w, and w, are class weights computed as w; = ZLN] with N; being the number of samples in class

j. Dynamic hyperparameter optimization is implemented using the Optuna framework with Tree-
structured Parzen Estimator (TPE) algorithms. The optimization space includes learning rates 1 €
[107%,107%] with logarithmic scaling, batch sizes B € {16,32,64,128}, weight decay values A€
[107%,107%], and dropout rates pgop € [0.1,0.5].

The optimization objective function is defined as:

6" = argmin £ [L,1(0)] (8)
where 6 represents the hyperparameter vector and L, (8) is the validation loss.

Dynamic optimizer selection evaluates four different optimizers: AdamW with decoupled weight
decay, RAdam with rectified adaptive learning rates [20], Ranger combining RAdam with Lookahead
optimization, and SGD with momentum and Nesterov acceleration. The selection criterion is based on
validation performance after initial training epochs.

3.3.3.  Feature Extraction from Fine-tuned Models

After supervised fine-tuning, discriminative features are extracted from each of the three backbone
architectures for subsequent ensemble learning. The feature extraction process removes the final
classification layers while preserving the learned feature representations from the penultimate layers.

For EfficientNetV2-L, features fz € R™8? are extracted from the global average pooling layer. The
Swin Transformer produces features f; € R™3*¢ from the final normalization layer before classification [21].
ConvNeXt generates features f; € R***® from the global average pooling layer preceding the classifier.
The extracted features undergo standardization using z-score normalization to ensure consistent scales
across different architectures:

f_
faom = 9)
f

where p; and o are the mean and standard deviation computed from the training set features.
3.3.4.  Ensemble Learning through Feature Fusion and Meta-learning

The ensemble learning component uses a two-stage process to be a sophisticated approach that
combines feature-level fusion and meta-learning for the final classification using LightGBM as the classifier
[22]. The early fusion approach is paired with a stacked ensemble methodology that takes advantage of the
complementary strengths of the three backbone architectures in order to maximize performance.

Feature-level fusion is implemented through concatenation of the standardized feature vectors:
ffused = [fE,norm @ fS,norm @ fC,norm] € R4864 (10)

where @ denotes concatenation operation and the resulting fused feature vector has dimensionality
dfusea = 1280 + 1536 + 2048 = 4864.

A meta-learner utilizing LightGBM, which implements gradient boosting using advanced
optimization methods, processes these combined features. By utilizing a combination of leaf-flourishing
tree growth and histogram-based algorithms, LightGBM is able to provide highly efficient training options
for models formed from data that has been pre-combined into features. The mathematical formulation for
the gradient boosting process is:

Fn(x) = Fino1 (%) + Ymhon (%) (11)
where F,(x) is the ensemble prediction after mm m iterations, h,,(x) isthe m-th weak learner, and
Ym is the step size determined through line search.
The objective function for LightGBM optimization includes both loss and regularization terms:

Lyigneeam = 2ieq L(vi, Fn(x)) + hIy a(hy) (13)
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where [(-) is the loss function and Q(-) represents regularization terms controlling model complexity.

Hyperparameter optimization for LightGBM explores parameters including number of leaves L €
[31,511], learning rate Mgy, € [0.01,0.3], maximum depth d,,,, € [3,15], feature fraction fj,. € [0.6,1.0],
and regularization parameters A;;,2;, € [0, 10].

Algorithm 3: LightGBM Classification for Skin Cancer Diagnosis
Require:

* Labeled dataset D = {(x;,y:)},

* Number of boosting rounds T

® Learning rate 7

®* Maximum tree depth d

® Loss function L(y,)
Ensure: Trained LightGBM classifier Fr(x)
1: Initialize the model:

N
Fy(x) = arg minz L(y;,c)
[
i=1

2. for t =1to T do

3: Compute gradients and hessians for each x:
_ aL(yi'Ft—l(xi)) h = azL(yi'Ft—l(xi))
' OF_1(x) ' ! OF; 1 (x:)?

4: Train regression tree h.(x) using (g;, h;):

* Histogram-based split finding
* Leaf-wise tree growth
® Gradient-based One-Side Sampling (GOSS)
® Depth limited to d
5: Update the ensemble:

Fe(x) = Foy(x) + 1 - he (%)
6: end for
7: Output the final model:

y=Fr(x)

3.3.5.  Classification Output

The final classification output combines the probabilistic predictions from the LightGBM meta-learner
with confidence estimation mechanisms. The model produces binary classification probabilities
P(y=1]x) and P(y =0 | x) for malignant and benign classes respectively.

The final prediction is determined by:

y =arg max P(y = ¢ | frusea) (14)
cef{0,1}
Confidence scores are computed using prediction entropy:
Confidence =1 —H(P) =1+ Yceoy P(y =clx)logP(y=clx) (15)

where H(P) represents the entropy of the prediction distribution.

3.4. Explainable AI (XAI) Implementation

Explainable Al has integrated several techniques to enable comprehensive insight into how the model
is making its decisions. In order to fulfil the requirement for interpretability in clinical applications, a multi-
modal approach to explainability combines both visual explanations and an overall quantitative measure
of the importance of each feature within the model. Through this combination of both visual and
quantitative metrics, clinical users can improve their clinical understanding of and build their trust in the
model output. Gradient-weighted Class Activation Mapping (Grad-CAM) is implemented for CNN-based
architectures (EfficientNetV2-L and ConvNeXt) to generate visual explanations. Grad-CAM computes the
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gradient of the target class score with respect to feature maps in the final convolutional layer:
1 ay°¢
o = EZi P Ji (16)

oA,

where «f denotes the importance weight for feature map k and class ¢, Af; is the activation at
spatial location (i,j) in feature map k, and Z is the factor of normalization.
LGrag-cam = ReLU(Z a5 A*) 17)
For the Swin Transformer architecture, attention visualization leverages the multi-head self-attention
mechanism. The attention weights from the final transformer block are aggregated across heads and spatial
dimensions:

Aavg = %Zﬁ:lA(h) (18)
where H is the number of attention heads and A™ represents the attention matrix for head h.
SHAP (SHapley Additive exPlanations) analysis is applied to the LightGBM meta-learner to quantify
feature contributions. SHAP values satisfy the efficiency property:
Situed ¢ = f(x) — E[f(X)] (19)

where ¢; represents the SHAP value for feature i, and f(x) is the model prediction.

4. Experiments and Results

This section presents a detailed analysis of the experimental findings derived from an extensive series
of evaluations conducted to assess the performance and clinical utility of the proposed diagnostic
framework. The system'’s effectiveness was rigorously tested across three benchmark dermoscopic datasets
obtained from previously published studies, enabling a comprehensive comparison of its diagnostic
accuracy, robustness, and generalization capability.All experiments were conducted in a computationally
intensive environment using NVIDIA RTX 4090 Graphics Processing Units (GPUs) to maximize training
and evaluation efficiency. The framework was implemented in PyTorch 2.0 with CUDA 11.8 support,
enabling full GPU acceleration. Mixed precision training was employed to reduce memory overhead and
accelerate training while maintaining numerical stability.

Hyperparameter optimization was performed using Optuna. After 100 trials with median pruning, the
optimal values identified for the final model were: learning rate = 1e-4, batch size = 32, weight decay = le-
5, and dropout = 0.3. Cross-entropy loss on the validation set was used as the objective metric, and
validation splits guided the hyperparameter selection. The data preprocessing and augmentation pipeline
was executed with the following optimal settings: images were resized to 384x384 pixels using bicubic
interpolation and normalized with ImageNet statistics (i =[0.485, 0.456, and 0.406], o =[0.229, 0.224, 0.225]).
Geometric augmentations included random cropping with scale s = 0.9, horizontal and vertical flipping
with probability p_flip = 0.5, and rotation 0 = £15°. Color augmentations included brightness 3 = 1.1,
contrast v = 1.0, saturation d = 1.05, and hue shift £ = 0.05. All augmentations were applied stochastically
with probability p_aug = 0.7.These optimal settings were used consistently across all datasets to ensure
reproducibility and maximize model performance, and all reported metrics reflect the results obtained with
this configuration.

The proposed skin cancer diagnostic model was evaluated on both the ISIC 2019 and HAM10000
datasets using multiple performance metrics, including Accuracy, Precision, Recall, F1-score, Specificity,
and ROC-AUC, to provide a comprehensive assessment of its diagnostic capability. On the ISIC dataset,
the model achieved an accuracy of 93.66% (95% CI: 92.10-95.12%), precision of 91.12%, recall of 91.97%, F1-
score of 91.54%, specificity of 94.21%, and ROC-AUC of 0.967. Similarly, on the HAM10000 dataset, the
model obtained an accuracy of 95.34% (95% CI: 94.10-96.58%), precision of 93.98%, recall of 94.56%, F1-
score of 94.27%, specificity of 96.12%, and an ROC-AUC of 0.981.Bootstrap resampling with 1,000 iterations
was used to compute the confidence intervals, ensuring that the reported metrics reflect their statistical
reliability. Threshold selection for binary classification was determined using the Youden’s | statistic to
balance sensitivity and specificity. The results indicate that the inclusion of self-supervised pretraining,
multi-architecture ensemble learning, and explainable Al techniques not only improves overall accuracy
but also maintains high sensitivity and specificity, highlighting the robustness and generalizability of the
framework across diverse dermoscopic datasets.

In another experiment, confusion matrices were utilized to assess the effectiveness of the proposed
framework in accurately classifying benign and malignant skin lesions, as shown in Figure 5. The model
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demonstrated a notable average accuracy of 94.50% across both ISIC and HAM10000 datasets, highlighting
its strong capability to distinguish between different types of skin lesions with high reliability.
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Figure 3. Proposed Model results in terms of Accuray, Precision and Recall.

Benign Benign

3 o
2 2
@ w
3 =
E =
Malignant Malignant
Benign Malignant Benign Malignant
Predicted label Predicted label
ISIC 2019 Dataset HAM10000 Dataset

Figure 4. Confusion Metrics of ISIC 2019 and HAM10000 Datasets

Grad-CAM and attention visualizations were generated for sample dermoscopic images to assess the
clinical relevance of the explainability modules. SHAP values from the meta-learner were analyzed to
interpret the contribution of individual features in ensemble predictions. The highlighted regions were
compared with lesion segmentation masks using the Dice coefficient, achieving an average overlap of 0.82
+ 0.05, indicating that the model focuses on clinically relevant areas. Example heatmaps and attention
overlays are shown in Figure X. Failure cases were also examined, highlighting instances where the model
attended to non-lesion regions, providing insight into limitations and areas for future improvement. These
results demonstrate that the proposed framework is both accurate and interpretable in a clinically
meaningful manner.

For comparative analysis, three baseline approaches were selected from published studies to provide
a fair reference: Baseline 1 [23] proposed a Computer-Assisted Diagnosis (CAD) framework using a
lightweight CNN architecture for early detection of skin diseases; Baseline 2 [24] evaluated skin lesion
classification using four CNN-based architectures—DenseNet, MobileNetV2, Xception, and
InceptionResNetV2 —assessing their effectiveness in a comprehensive framework; Baseline 3 [25]
employed a combination of CNNs, Residual Networks, and Xception models to detect skin diseases early,
emphasizing both accuracy and robustness. All baseline models were re-implemented under identical
experimental conditions, including the same dataset splits, preprocessing pipeline, and augmentation
strategies used for the proposed framework. Each model was trained and evaluated over five independent

runs to account for stochastic variability, and the mean * standard deviation of the performance metrics
was recorded.
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The proposed framework achieved an accuracy of 94.5% + 0.62%, outperforming Baseline 1 (88.45% +
0.75%), Baseline 2 (90.15% + 0.68%), and Baseline 3 (92.98% + 0.55%). The precision of the proposed model
was 92.55% * 0.71%, compared with 86.45% + 0.80%, 88.62% + 0.72%, and 91.61% + 0.60% for the respective
baselines, while the recall reached 93.26% + 0.65%, exceeding Baseline 1 (87.45% + 0.78%), Baseline 2 (89.22%
+ 0.70%), and Baseline 3 (91.45% + 0.59%).These improvements are attributable to the inclusion of self-
supervised pretraining (SimCLR) for robust feature representation, multi-architecture ensemble learning
(EfficientNetV2-L, Swin Transformer, ConvNeXt) to reduce model bias, and explainable AI methods
(Grad-CAM, SHAP) to focus on clinically relevant regions for accurate lesion localization. By controlling
for experimental conditions and reporting variance across runs, the observed performance gains reflect

methodological superiority rather than differences in setup.
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Figure 5. Comparative Analysis of Proposed Model with Baselines.

To evaluate the contribution of each component in the proposed framework, an ablation study was
conducted on both ISIC 2019 and HAM10000 datasets. The study systematically removed or modified key
components, including self-supervised pretraining (SimCLR), the multi-architecture ensemble, and
explainable Al modules (Grad-CAM and SHAP), and measured the resulting impact on classification
performance. This approach allows a quantitative assessment of how each module contributes to the
overall effectiveness of the framework.

Table 1. Model evaluation and results

Model Accuracy Precision Recall F1-Score
Variant (%) (%) (%) (%)
Full 93.91 93.59 +
Framework 94.92 + 0.60 93.27 +0.68 063 0.65
Without 91.25 90.65 +
SimCLR 91.85+0.65 90.05 +0.72 068 0.70
Single
Backbone 91.60 91.22 +
2.55+0.62 .85 +0.
(No 92.55+0.6 90.85 + 0.68 0.6 0.66
Ensemble)
Without
. 92.75 92.52 +
Expli?able 93.80 +0.61 92.30 + 0.67 0.6 0.65

The results indicate that the full proposed framework consistently outperforms all ablated variants,
with the highest average accuracy (94.92%) and F1-score (93.59%). Removing self-supervised pretraining
(SimCLR) causes the largest drop in performance, highlighting its critical role in learning robust feature
representations from unlabeled dermoscopic images. The multi-architecture ensemble contributes
significantly by capturing complementary features from different backbones, while the explainable Al
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modules further enhance precision and recall by focusing the model on clinically relevant regions. These
findings confirm that the superior performance of the proposed framework is the result of the combined
contribution of all its components.

5. Conclusions

This study proposed a hybrid deep learning framework for skin cancer diagnosis that integrates self-
supervised pretraining, multi-architecture ensemble learning, and explainable artificial intelligence (XAI)
techniques. The framework leverages SimCLR-based contrastive learning to generate rich and
discriminative feature representations from large unlabeled dermoscopic datasets, which are subsequently
fine-tuned through supervised learning across three advanced architectures —EfficientNetV2-L, Swin
Transformer, and ConvNeXt. A meta-learning classifier based on LightGBM fuses the features from these
architectures, achieving enhanced diagnostic performance. Experimental evaluations conducted on
benchmark datasets (ISIC and HAM10000) demonstrated that the proposed framework significantly
outperformed existing baseline models. These results confirm the model’s robustness, sensitivity, and
reliability in distinguishing between benign and malignant skin lesions. Moreover, the integration of
explainable Al methods such as Grad-CAM and SHAP provided meaningful visual and feature-level
explanations, enhancing model interpretability and clinical trust—an essential component for real-world
medical applications. Future research will focus on integrating multimodal data (e.g., patient metadata and
histopathology images), developing lightweight real-time versions for resource-limited settings, and
enhancing model explainability and uncertainty estimation to improve clinical reliability and trust.
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