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Abstract: In order to detect oral cancer early from photos of the tongue and lips, this research 

introduces a confidence-calibrated, dual-branch framework. A lightweight texture branch 

(MLBP/HOG) maintains micro-texture, a global CNN encodes colour-shape context, and an 

attention gate fuses branches per image. Since pixel-level annotations are unavailable, we guide 

the model’s attention using CAM-consistency regularization to improve lesion localization under 

weakly supervised training. Improved cross-site robustness is achieved through 

domain-adversarial alignment, while probability outputs are calibrated through temperature 

scaling. With stratified evaluation, the model achieves the following on the Oral Cancer (Lips & 

Tongue) dataset: Brier 0.092, Accuracy 0.892, Macro-F1 0.883, AUROC 0.912, AUPRC 0.884, and 

ECE reduces from 0.067 to 0.031 after calibration. Low post-calibration ECE (0.029/0.033) and high 

site-wise performance (Lips AUROC 0.922; Tongue 0.902) are maintained. By combining the 

texture branch, CAM-consistency, and domain alignment, ablation demonstrates cumulative 

benefits: when compared to a baseline CNN, the combined performance is the best with minimal 

compute overhead (AUROC 0.872; AUPRC 0.834; ECE 0.050). When considering utility, a 

threshold θ* = 0.50 equals Includes a PPV of 0.846, NPV of 0.897, Coverage of 87.2%, and Referral 

of 12.8%; Sensitivity of 0.892; and Specificity of 0.852. Trustworthy triage is supported by the 

system's calibrated probabilities and CAM overlays, and real-world deployment on cloud or 

mobile platforms is encouraged by its robustness to site variability. Practical and reliable 

photo-based oral-cancer screening relies on complementary features, targeted regularization, and 

explicit calibration, according to the results.  

 

Keywords: Oral Cancer; Domain-Adversarial Alignment; Convolutional Neural Network; 

Attention Gate; Lightweight Texture Branch 

 

1. Introduction 

Due to the late detection of many lesions, treatment becomes complicated and outcomes worsen, oral 

cancer continues to be a substantial public-health burden [1]. Lesion heterogeneity (erythema, keratosis, 

ulceration) [3], variations in lighting, pose, saliva glare, device optics, and clinical visibility are some of the 

challenges to photographic screening when it comes to lip and tongue sites [2]. Thus, robustness across 
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anatomical sites and capture conditions, interpretable signals for clinical trust, well-calibrated 

probabilities, and strong discrimination are all necessary for practical screening systems [4-5]. 

 A confidence-calibrated, dual-branch detection framework tailored to Oral Cancer (Tongue & Lips) 

images is presented here to meet these demands. A global convolutional branch is used to encode 

colour-shape context relevant to surface changes, and a lightweight texture branch (MLBP/HOG + MLP) is 

used to preserve fine-grained micro-texture indicative of keratinization and ulcer margins. The core idea 

is to fuse these two representations. In order to determine the relative importance of each branch for each 

image, fused features are directed through an attention gate. Training with weak localization via 

class-activation maps (CAMs) promotes spatial consistency where the model evidences malignancy, since 

annotated lesion masks are typically unavailable in this setting. This allows learning to focus on clinically 

meaningful regions without requiring pixel-level labels. 

 By promoting pathology-centric, site-agnostic features, a domain-adversarial alignment head can 

reduce domain shift when imaging the tongue as opposed to the lips. To improve the reliability of 

reported probabilities and reduce over-confidence, logits are subjected to temperature scaling after 

training. Instead of focusing on optimizing just one metric, a utility-aware threshold is chosen based on 

validation data to represent clinical priorities. This threshold takes into account referral (abstention) costs, 

specificity, and sensitivity. Sites can adjust to local workflow constraints (such as prioritizing sensitivity in 

triage or PPV when referral capacity is limited) while still benefiting from an actionable default operating 

point. 

 In a stratified protocol that maintains class and site proportions, the framework is tested on the Oral 

Cancer (Lips & Tongue) images dataset [6]. On the test set that was kept out, the overall accuracy was 

0.892, macro-F1 was 0.883, AUROC was 0.912, and AUPRC was 0.884. Reliable risk communication is 

supported by strong probability quality (Brier = 0.092) and an improvement in ECE from 0.067 

pre-calibration to 0.031 post-temperature scaling. Lips AUROC 0.922 vs. Tongue 0.902 and tight 

post-calibration ECE of 0.029 and 0.033, respectively, demonstrate consistently high performance, 

indicating generalization across anatomical sites. 

 The proposed system offers a number of benefits, including: (1) accurate discrimination even when 

sites are variable; (2) triage-appropriate calibrated probabilities; (3) interpretable CAM overlays that 

highlight evidence concentrations; and (4) a path that is ready for deployment in cloud or mobile 

environments. The framework moves oral-cancer photo-screening closer to safe, scalable use by 

documenting the reasons behind each design choice in relation to a real clinical constraint (small data, 

domain shift, trust), how the model fuses multi-scale cues, what operating point maximizes utility, and 

the locations of explanations. Here is how the remainder of the paper is structured: In Section 2, the 

relevant literature is reviewed; in Section 3, the methodology is laid out in great detail; in Section 4, the 

results and discussion are addressed; and finally, in Section 5, the conclusion is drawn. 

 

2. Related Works 

Machine learning and deep learning have demonstrated great potential in five recent studies for 

improving the accuracy and timeliness of oral-cancer assessments, as well as in tackling practical issues 

like explain ability, pre-processing, and mobile deployment. 

 By combining clinical indicators with high-resolution imaging features, the integrated framework 

presented by Tusher et al. [7] assesses logistic regression, decision trees, random forests, SVMs, and CNNs 

prior to ensemble assembly. Combining clinical and imaging signals enhances early-detection capability 

and supports timely intervention. Compared to classical models, which achieve modest discrimination, 

multimodal ensemble has the optimum balance between accuracy (91%), sensitivity (89%), specificity 

(92%), and area under the curve (93%). 

 Cimino et al. [8] enhance interpretability by integrating deep learning and Case-Based Reasoning 

(CBR) in a BPMN-defined protocol for post-hoc explanations.  160 cases (representing three ulcer classes) 

were optimized by applying FPN to a redesigned Faster-R-CNN, yielding 83% detection, 92% multi-class 

classification, and an astounding 98% binary discrimination between neoplastic and non-neoplastic cases.  

Following validation of the explain ability workflow with resident and specialist physicians on difficult 

situations, the system and the cases are made publicly available. This solves the problem of clinical trust, 

guarantees reproducibility, and encourages cooperation amongst centers. 
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 Patel and Kumar [9] isolate the impact of pre-processing on model quality by comparing CNNs, 

SVMs, and random forests in terms of normalization, outlier identification, and missing-value imputation.  

While min-max normalization produces the greatest results for CNNs with a top accuracy of 94% and the 

lowest MSE of 0.013, outlier identification comes in second with an accuracy of 93% and an MSE of 0.014.  

When missing-value imputation is used, a tiny gap is seen (92%, MSE 0.015).  Pre-processing should be 

viewed as a first-order design decision rather than an afterthought, as the results demonstrate that 

rigorous normalization can greatly increase accuracy and calibration-adjacent error. 

 Desai et al. [10] train DenseNet201 and an adapted FixCaps using 518 oral-cavity images labelled as 

suspicious or non-suspicious using standardized protocols. They then focus on scalable screening through 

smartphones and cloud delivery. ~20M parameters are sufficient for DenseNet201 to achieve F1 = 87.5% 

and AUC = 0.97 (accuracy 88.6%), making it appropriate for web apps hosted in the cloud. With only 

approximately 0.83 million parameters, FixCaps achieves an F1 of 82.8% and an AUC of 0.93 (an accuracy 

of 83.8%), making native on-device deployment easier. In this cloud-versus-edge comparison, to see 

practical compromises between peak accuracy and footprint that can be considered when screening in the 

real world. 

 At 100× and 400× magnifications, Yaduvanshi et al. [11] [16] capture global and local texture 

connectivity in OSCC images using a modified local binary pattern (MLBP) for target histopathology. The 

features of MLBP are tested using SVM, KNN, and decision trees on a Mendeley dataset that contains 528 

OSCC and 696 normal epithelium images at 400×. A DCNN is then used to further improve the features. 

MLBP-SVM maintains a consistent lead in all metrics, while the hybrid of MLBP and DCNN achieves 

accuracy levels of 91.36% (100×) and 94.44% (400×), suggesting that the morphological changes 

characteristic of cancer are effectively encoded by texture-aware representations combined with deep 

feature learning [17]. 

 All of these pieces of work come together to address the following design imperatives: (i) combining 

different types of data sets improves detection performance; (ii) using structured explain ability with CBR 

and BPMN protocols helps with clinical validation and adoption; (iii) carefully normalizing the data sets 

improves the accuracy and error characteristics of the models; (iv) using lightweight edge models and 

complementary cloud data to increase access to screening workflows; and (v) using DCNNs to amplify 

texture-centric features to capture discriminative histopathological cues at different magnifications [12]. 

Collectively, they outline a realistic path from algorithm development to tools that can be deployed and 

understood, which can speed up the early detection of oral cancer in various clinical settings [18]. 

 

3. Materials and Methods  

Presented here is a deployment-ready framework that has been thoughtfully developed to address 

the clinical needs of early and reliable detection from photos of the tongue and lips. The design decisions 

have been informed by the constraints imposed by the Oral Cancer (Lips & Tongue) images dataset, 

which has small sample sizes, inconsistent lighting, and diverse lesion morphologies. Linked studies 

validate the emphasis on clinical photos of the lips and tongue rather than histology, directing the areas 

where pre-processing and texture modelling should exert the most effort, and the dataset's description 

and public availability (Kaggle) inspire a lightweight but rigorous pipeline. The proposed model's 

workflow is depicted in Figure 1.  

To organize the method into seven subsections that map to the data and clinical decision flow: (1) 

data model & notation; (2) photometric normalization and augmentation; (3) weak lesion localization; (4) 

dual-branch features (CNN + texture); (5) attention-guided fusion & classifier head; (6) learning objectives 

& optimization; (7) calibrated inference & operating point selection. Throughout, each equation defines 

how a component works and why it is needed at the point of use. 

3.1. Data Model & Notation (what is modelled, and why this structure) 

Let the training set be 

 𝒟 = {(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖)}𝑖=1
𝑁              (1) 

Where xi ∈ ℝH×W×3is an RGB image of the oral cavity focused on lips or tongue, yi ∈ {0,1}indicates 

non-cancer vs cancer, and di ∈ {L, T}marks site domain (Lips/Tongue). This explicit domain label lets the 
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model know where the image originates, enabling domain-aware regularization (Sec. 3.6) to mitigate 

site-specific distribution shift. 

To stratify splits by 𝑑and 𝑦(to preserve class balance across lips/tongue) and hold out a validation 

set for calibration and threshold selection (why: unbiased selection of 𝑇and 𝜃\*in Sec. 3.7). 

 
Figure 1. Workflow of the proposed model 

3.2. Photometric Normalization & Data Augmentation (how to stabilize illumination and boost 

generalization) 

Why here. Smartphone and clinic photos vary in colour temperature and exposure; cancer cues 

(erythema, keratosis) are chromatic-contrast sensitive. Thus, colour constancy + gamma correction reduce 

nuisance variability before representation learning [13]. 

1. Gray-world color constancy. For channel𝑘 ∈ {𝑅, 𝐺, 𝐵}, let 𝜇𝑘be the image mean and 𝜇refa target gray 

level (e.g., 128). 

𝑠𝑘 =
𝜇ref

𝜇𝑘
, 𝑥𝑝,𝑘

′ = 𝑠𝑘  𝑥𝑝,𝑘             (2) 

Variables: 𝑠𝑘is per-channel gain; 𝑝indexes pixels; 𝑥′is color-balanced image. Why: cancels cast; 

where: applied to every training and inference image. 

Gamma correction to linearize mid-tones: 

𝑥𝑝,𝑘
′′ = (

𝑥𝑝,𝑘
′

255
)𝛾 ⋅ 255, 𝛾 ∈ [0.8,1.4]            (3) 

Why: stabilizes brightness; how: sample 𝛾for augmentation in training; fix 𝛾 = 1at inference 

unless photos show strong under/over-exposure. 

Mixup to regularize decision boundaries under small data: 

𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 , 𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 , 𝜆 ∼ Beta(𝛼, 𝛼)        (4) 

Variables: 𝛼controls interpolation strength. Why: reduces overfitting; where: minibatch-wise. 

CutMix for occlusion robustness: 

𝑥̃ = 𝑀⊙ 𝑥𝑖 + (1 − 𝑀)⊙ 𝑥𝑗 , 𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 , 𝜆 =
∥𝑀∥1

𝐻𝑊
        (5) 

Variables: 𝑀 ∈ {0,1}𝐻×𝑊 is a random rectangle mask; ⊙elementwise product. Why: encourages 

spatial invariance to secularities, tools, or tongue depressors. 

Geometric jitter (±10° rotate, scale 0.9–1.1), horizontal flips (for symmetry), and mild CLAHE on 

the* channel (Lab) are applied where colour/texture cues dominate. 

3.3. Weak Lesion Localization via Class Activation (what guides attention, how it’s enforced) 
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Why. True lesion masks are not provided in the lips/tongue photo sets; weak localization steers the 

backbone to where discriminative anatomy lies (ulcer margins, erythroplakia, and leukoplakia) without 

manual annotation. 

Let 𝐹𝑘 ∈ ℝℎ×𝑤be the 𝑘-th feature map from the last CNN block and 𝑤𝑘
(𝑐)

the class-specific weight. 

Class activation map (CAM). 

𝐴(𝑐) =∑ 𝑤𝑘
(𝑐)

 𝐹𝑘, 𝑐 ∈ {0,1}
𝑘

            (6) 

Variables: 𝐴(𝑐)highlights where features support class𝑐. 

Probabilistic saliency: 

𝑆 = 𝜎(𝐴(1) − 𝐴(0)) ∈ [0,1]ℎ×𝑤            (7) 

With 𝜎 the logistic function. Why: converts raw evidence into per-pixel “cancer-support” 

probabilities. 

Pseudo-mask for consistency. 

𝑀𝑝 = 𝟙{𝑆𝑝 ≥ 𝜏}, 𝜏 = quantile(𝑆, 0.85)           (8) 

Where/how: threshold top-15% of salient pixels to encourage compact, high-confidence foci; used 

only as a training target for an attention-consistency loss (Sec. 3.6). 

3.4. Dual-Branch Feature Extraction (what is learned, and why two streams) 

Why two streams. Oral lesions present global shape/colour changes (macro erythema, induration) 

and local micro-texture (granularity, keratin). A global CNN branch captures context and colour 

morphology; a texture branch captures high-frequency patterns that CNNs may smooth out under heavy 

augmentation. 

3.4.1. Global CNN branch 

Use a lightweight backbone (e.g., EfficientNet-B0 or MobileNetV3-S) for compute-efficient 

inference on phones or cloud edge; final pooled vector𝑓𝑔 ∈ ℝ𝐺 . 

3.4.2. Texture branch (MLBP + HOG → small MLP) 

MLBP and HOG were selected as texture descriptors due to their robustness to illumination 

variation and their ability to capture fine-grained surface irregularities, which are common visual cues in 

oral lesions. Compared to higher-order or learned texture representations, these descriptors offer stable 

performance on limited clinical datasets and retain interpretability that is useful for medical image 

analysis [14]. 

From luminance Y(after Eq. 1–2), compute Modified Local Binary Patterns (MLBP) over radii set 

ℛand sampling points𝒮. 

MLBP code at pixel(x, y). 

MLBPx,y =∑ 2s 𝟙{ Y(xs, ys) − Y(x, y) ≥ δ }
∣𝒮∣−1

s=0
         (9) 

Variables: (xs, ys)are neighbors on a circle of radiusr ∈ ℛ; δis a contrast threshold to suppress 

noise. Why: encodes local micro-texture robustly to monotonic light changes. 

Histogram hLBP ∈ ℝBLBPis formed per cell and concatenated across cells. 

HOG binning (per cell). 

hb =∑ gp 𝟙{b(θp) = b}
p∈cell

, gp = √gx
2 + gy

2, θp = arctan⁡2(gy, gx)                (10) 

Variables: b indexes orientation bins; gx, gy are Sobel gradients. Why: captures lesion edge 

orientation/roughness. 

Concatenate standardized features to obtain 𝑓𝑡 = 𝜙([ℎLBP; ℎHOG]) ∈ ℝ𝑇via a two-layer MLP𝜙. This 

branch is parameter-light and complements the CNN. 

3.5. Attention-Guided Fusion & Classifier Head (how features interact, what the model predicts) 

An attention-gated fusion strategy was adopted instead of direct concatenation or additive fusion 

to enable adaptive weighting of texture and global features on a per-image basis. This design allows the 

network to emphasize the more informative branch under varying visual conditions, which is 

particularly important when lesion visibility differs across tongue and lip images. 
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Why fusion. CNN and texture channels respond to different cues; an adaptive gate lets the model 

decide where to rely more on colour/shape or texture for a given image (e.g., smooth erythroplakia vs. 

keratotic plaque). 

Gating weights. 

𝛼 = softmax(𝑊𝑎 [𝑓𝑔; 𝑓𝑡] + 𝑏𝑎) ∈ ℝ2, 𝛼1 + 𝛼2 = 1                   (11) 

Variables: 𝑊𝑎 , 𝑏𝑎gating parameters; [ ;  ]denotes concatenation. How: attention over branches. 

Fused representation. 

𝑓 = 𝛼1𝑓𝑔 + 𝛼2𝑓𝑡 ∈ ℝmax⁡(𝐺,𝑇)                      (12) 

Logit and probability: 

𝑧 = 𝑊𝑐𝑓 + 𝑏𝑐 , 𝑝 = 𝜎(𝑧) =
1

1+𝑒−𝑧
∈ [0,1]                     (13) 

Variables: 𝑊𝑐 , 𝑏𝑐 ⁡classifier head; 𝑝is the cancer probability used for loss and decision-making. 

3.6. Learning Objectives & Optimization (why these losses, how they work, where they act) 

The objective blends: class-balanced focal loss (rare positives), attention-consistency (weak 

localization), domain alignment (lips↔tongue), and weight decay. 

Class-balanced focal loss (binary). 

ℒfocal = −𝛼 𝑦 (1 − 𝑝)𝛾log⁡𝑝   −   (1 − 𝛼) (1 − 𝑦) 𝑝𝛾log⁡(1 − 𝑝)                 (14) 

Variables: 𝛼 ∈ (0,1)balances classes; 𝛾 ≥ 0focuses on hard errors. Why: tongues and lips sets may 

be imbalanced and easy negatives are plentiful; focal down-weights them. 

Attention-consistency Dice loss. Let 𝑆̂be the upsampled saliency from Eq. (6) to image size and 

𝑀from Eq. (7). 

ℒdice = 1 −
2∑ 𝑆̂𝑝𝑀𝑝

𝑝
+𝜖

∑ 𝑆̂𝑝
𝑝

+∑ 𝑀𝑝+𝜖
𝑝

                      (15) 

Variables: 𝜖for numerical stability. Where/how: only for positives or high-𝑝 samples, to avoid 

forcing false localization on negatives. Why: encourages where CAM says “cancer” to be 

compact/consistent. 

Domain-adversarial alignment (lips↔tongue). Introduce a small domain classifier 𝐷 on 𝑓 , 

predicting𝑑 ∈ {𝐿, 𝑇}. With gradient reversalℛ: 

ℒdom = CE(𝐷(ℛ(𝑓)), 𝑑)                       (16) 

Why: reduces domain shift; where: helps generalize if one site dominates training. 

Weight decay (ridge). 

ℒℓ2 =∥ Θ ∥2
2                         (17) 

With Θall trainable weights. Why: regularization under small𝑁. 

Total loss. 

ℒ = ℒfocal + 𝜆1 ℒdice + 𝜆2 ℒdom + 𝜆3 ℒℓ2                     (18) 

Variables: 𝜆1, 𝜆2, 𝜆3 ≥ 0tuned on validation via grid or Bayesian optimization. How: backprop with 

AdamW; cosine LR schedule; early stopping on AUROC. 

Mixup/CutMix with soft labels. For Eq. (3–4) samples, use 𝑦 ∈ [0,1]in Eq. (13); this is naturally 

handled by the binary focal form. 

Batching & curriculum. Begin with 𝜆1 = 0for 5 epochs (learn coarse classifier), then ramp 𝜆1to 

enforce localization once the model is confident what looks malignant. 

3.7. Calibrated Inference, Thresholding & Deployment  

Clinical tools need calibrated probabilities—not just high AUROC. To apply temperature scaling 

on the validation set and provide utility-aware thresholding with an abstention option for tele-screening. 

The entropy-based abstention mechanism was applied only at inference time for threshold analysis and 

does not affect model training or the primary classification metrics reported in the Results section. 

Temperature scaling (binary). With validation logits 𝑧 , find 𝑇 > 0minimizing NLL; deploy 

probabilities are 

𝑝𝑇 = 𝜎(
𝑧

𝑇
)                (19) 

Why/how: 𝑇 > 1softens over-confident scores; optimize by LBFGS on the held-out validation split. 

Uncertainty score (entropy) for abstention. 

𝐻(𝑝𝑇) = −[𝑝𝑇log⁡𝑝𝑇 + (1 − 𝑝𝑇)log⁡(1 − 𝑝𝑇)]          (20) 
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Where: in tele-screening apps, abstain (refer) if𝐻 > 𝜏𝐻, i.e., the model is uncertain. 

(20) Operating point selection. Choose probability threshold 𝜃\*to maximize a utility that trades 

sensitivity, specificity, and abstention cost: 

𝑈(𝜃) = 𝛽 Sens(𝜃) + (1 − 𝛽) Spec(𝜃) − 𝜅 Abstain(𝜃), 𝜃\* = arg⁡max⁡
𝜃

𝑈(𝜃)          (21) 

Variables: 𝛽 ∈ [0,1]reflects clinical priority (e.g., 𝛽 = 0.7to emphasize sensitivity for early detection); 

𝜅 ≥ 0penalizes too many referrals. Why: encodes what the clinic values; how: compute metrics on 

validation after calibration. 

Inference protocol (step-by-step) 

1. Normalize incoming photo (Eq. 1–2). 

2. Resize to backbone input (e.g., 256→224 center-crop). 

3. Forward pass to obtain𝑓𝑔, 𝑓𝑡, fused 𝑓, logit 𝑧, probability 𝑝𝑇(Eqs. 10–12, 18). 

4. Decision: if𝐻(𝑝𝑇) > 𝜏𝐻, abstain → refer for clinician review; else label cancer if 𝑝𝑇 ≥ 𝜃\*(Eq. 20). 

5. Explain ability: return CAM overlay from 𝑆(Eq. 6) where the model focused, aiding trust. 

Deployment (where the model runs) 

• Cloud/web app: use full dual-branch with EfficientNet-B0; latency ∼ tens of ms on modest 

GPU/CPU. 

• On-device (native): replace backbone with MobileNetV3-S and quantize to INT8; keep texture branch 

(cheap) to preserve MLBP/HOG cues. 

These choices align with the dataset’s smartphone-style imagery and with prior work deploying 

lightweight models for oral screening; the Kaggle “Lips & Tongue” focus further motivates 

mobile-first considerations.  

Practical Notes on the “Lips & Tongue” Dataset (what assumptions are baked in) 

The Kaggle dataset explicitly contains images from lips and tongue categorized as 

cancerous/non-cancerous, captured under diverse acquisition settings typical of clinics and screening 

camps. While exact counts vary across mirrors and forks, studies using the same resource report 

small-to-moderate sample sizes. The initial collection of ≈131 images in one report reinforces the 

emphasis on augmentation, calibration, and lightweight modelling presented above. Why cite: to anchor 

assumptions about image type and scale that drive design.  

A single pre-processing pipeline was used for all experiments, consisting of image resizing and 

intensity normalization. Data augmentation was applied only during training and included random 

horizontal flipping, mild geometric jitter, and colour jitter. Other augmentation strategies mentioned in 

the manuscript (e.g., Mixup, CutMix, CLAHE, gamma correction) were explored during preliminary 

analysis but are not part of the final reported configuration and were not combined with the presented 

ablation studies. 

3.7.1. Training & Evaluation Protocol (how to ensure robust estimates, where to guard against over fitting) 

• K-fold stratification (K=5). Maintain class and domain ratios per fold to estimate variance across lips 

versus tongue. 

• Primary metrics: AUROC (threshold-free), AUPRC (for class imbalance), sensitivity/specificity at 𝜃\*, 

and ECE after temperature scaling to verify calibration quality. 

• Secondary metrics: Brier score (proper scoring), coverage (1−abstention), and PPV/NPV to map to 

clinical utility. 

• Ablations (why): remove texture branch (𝑓𝑡), remove CAM-consistency (𝜆1 = 0), or remove domain 

alignment (𝜆2 = 0) to quantify each design choice’s contribution. 

3.7.2. Failure Modes & Safeguards (what can go wrong and how to mitigate) 

• Specular highlights / saliva glare: CutMix and gradient-based augmentations reduce over-reliance; 

CAM-consistency regularizes focus away from random shiny spots. 

• Benign mimics (aphthae, trauma): entropy-based abstention prevents overconfident false positives; 

clinicians review images flagged with high𝐻(𝑝𝑇). 

• Domain shift (lips↔tongue; lighting): domain-adversarial alignment (Eq. 15) + colour constancy (Eq. 

1) maintain generalization. 

• Small lesions at edges: HOG bins (Eq. 9) retain boundary cues; TTA (simple flips) can be added at 

negligible compute cost. 
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Unless otherwise stated, all reported results correspond to a fixed final configuration. The global 

image branch uses an EfficientNet-B0 backbone, while the texture branch employs MLBP and HOG 

descriptors followed by a lightweight classifier. Feature fusion is performed using an attention-gated 

mechanism, and CAM-consistency regularization is enabled during training. This configuration is held 

constant across all experiments, except where a specific component is intentionally removed for ablation. 

 

4. Results 

Experiments were executed on an HP laptop powered by an Intel® Core™ i7 processor (8 cores/16 

threads, base 2.8 GHz, turbo up to 4.7 GHz), 16 GB DDR4 RAM, and 512 GB NVMe SSD storage. 

Graphics used either integrated Intel Iris Xe for development or an external NVIDIA® GTX 1650 (4 GB) 

for accelerated training when available. The system ran Windows 11 Pro (64-bit) with WSL2 Ubuntu 

22.04 for reproducible Linux tooling. The software stack included Python 3.10, PyTorch 2.3 with CUDA 

12.1/cuDNN 9, torchvision 0.18, scikit-learn 1.5, OpenCV 4.10, and Albumentations 1.4 for augmentation. 

Experiment tracking used Tensor Board and Weights & Biases; configuration management used 

Hydra/OmegaConf. All scripts were containerized with Docker 24.0 to ensure portability and exact 

package versioning across runs on all machines. 

4.1. Dataset description 

In this paper, the “Oral Cancer (Tongue and Lips) images dataset” have been utilized [6]. The OCI 

dataset comprises several oral images intended for categorization. This dataset includes images of 

tongues and lips categorized into two classes, including non-cancerous and cancerous images. Myriad of 

the images have been found to be in the “*.jpg” format. These images have been taken in various ENT 

hospitals across Ahmedabad, and the ultimate labelling has been performed by physicians and specialists. 

Several instances of mouth non-cancer and cancer cases have been represented in Figure 2. 

 
Figure 2. The instances of mouth (A) non-cancer and (B) cancer cases 

This study makes use of the "Oral Cancer (Lips and Tongue) images (OCI) dataset," a publicly 

available resource that has been painstakingly prepared for use in studies pertaining to the diagnosis of 

oral cancer. The experiments in this study are based on a publicly available collection of oral cavity 

images focusing on the lips and tongue, obtained from the Oral Cancer (Lips and Tongue) dataset hosted 

on Kaggle. The dataset contains 131 colour images, including 87 samples with clinically evident oral 

cancer and 44 visually normal cases. Images were captured in real-world screening or outpatient contexts 

using commonly available digital and smartphone cameras, resulting in natural variation in lighting, 

focus, and image resolution. Only images with clear visibility of the oral region were retained, while 

samples affected by severe blur, occlusion, or unrelated content were excluded prior to analysis. This 

dataset reflects practical conditions encountered in opportunistic oral cancer screening scenarios. All 

images are saved as.jpg files and then resized to 227 × 227 pixels with RGB colour channels so that they 

remain consistent when analyzed. Thorough pre-processing procedures were implemented to improve 
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the precision of the diagnostics. Among these, you can find Min-Max normalization and histogram-based 

contrast enhancement. The former standardizes the input data by scaling pixel values to a range between 

0 and 1, while the latter reduces irrelevant variations caused by artefacts or lighting inconsistencies. The 

goal is to improve visibility of subtle pathological features. Systematic data augmentation techniques 

further strengthened the dataset's robustness. To improve the model's ability to generalize, these 

included randomly rotating, flipping, and scaling to mimic various clinical situations. All reported 

dataset sizes and performance metrics in this study are based exclusively on the original, non-augmented 

images from the Oral Cancer (Lips and Tongue) dataset. Data augmentation was applied only during 

training to improve robustness and was not treated as additional clinical samples. No augmented images 

were included in validation or test sets, and all splits were performed prior to augmentation to prevent 

information leakage. Reproducible experiments and trustworthy performance evaluation are made 

possible by this careful dataset preparation, which forms a strong basis for the suggested deep learning 

model. All reported AUROC, AUPRC, F1-score, and calibration metrics were computed using 

predictions on the held-out test set comprising only original images, without inclusion of augmented 

samples. 

 
Figure 3. ROC (Macro & per-site) 

Figure 3 illustrate ROC (Macro & per-site): PNG This plot contrasts sensitivity–specificity trade-offs 

for Lips, Tongue, and the Macro (average) model. Curves bowed well above the diagonal “chance” line 

indicate strong ranking ability across thresholds. The Lips curve sits slightly higher than Tongue, 

implying modestly better discrimination on lip images; the Macro ROC lies between them, summarizing 

overall behavior. Differences at low false-positive rates are clinically important—maintaining high 

true-positive rates when specificity is tight reduces missed cancers during screening. The consistent 

separation from the diagonal suggests robust separability across acquisition conditions. 

Figure 4 illustrate PR with iso-F1 lines: PNG Precision–Recall curves are shown for Lips, Tongue, 

and Macro, with dotted iso-F1 contours to visualize the precision–recall balance. Compared with ROC, 

PR is more informative under class imbalance because it focuses on positives (cancers). Curves remaining 

in higher precision at reasonable recall indicate few false positives while detecting many lesions. Iso-F1 

lines help read off operating regions that achieve target F1 (e.g., 0.7–0.8). The Lips curve’s slightly better 

envelope implies cleaner positive identification, while Macro smooth’s per-site differences into an overall, 

clinically actionable profile. 

Figure 5 illustrate Reliability (pre vs. post temperature scaling): PNG The reliability diagram 

compares predicted probabilities (x-axis) with observed outcome frequencies (y-axis) across confidence 

bins. Perfect calibration lies on the diagonal. Pre-temperature scaling, points tend to sit above the 

diagonal at high confidence, indicating over-confidence (predicted probabilities exceed realized 

frequencies). Post-scaling, the points shift closer to the diagonal over most bins, reducing miscalibration 

while preserving ranking. This improvement matters because calibrated probabilities enable safer 
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threshold selection, more meaningful PPV/NPV reporting, and better triage decisions—especially when 

integrating abstention or referral logic downstream. 

 
Figure 4. PR with iso-F1 lines 

 
Figure 5. Reliability (pre vs. post temperature scaling) 

 
Figure 6. ECE bars (pre vs. post) 
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Temperature scaling was fit exclusively on the validation set by minimizing the negative 

log-likelihood, with no access to test data during optimization. The learned temperature parameter was 

then fixed and applied to the held-out test set for all calibration evaluations, preventing over fitting to 

test labels. 

Figure 6 shows the ECE bars before and after: PNG This bar chart summarizes Expected 

Calibration Error before and after temperature scaling. A lower bar indicates that anticipated probability 

more closely match actual occurrence rates across bins. The post-scaling bar significantly decreases, 

indicating a significant decrease in miscalibration. This shows that the model's confidence is now more 

reliable and is consistent with the reliability diagram. Better calibration, in practice, enhances shared 

decision-making. For instance, doctors can understand a "0.80 cancer probability" as roughly 80% event 

chance, boosting trust in thresholding and referral rules. 

Expected Calibration Error was computed using uniform confidence binning with 15 bins, 

following standard practice, and evaluated on the test set only. 

In addition to ECE and Brier score, negative log-likelihood is reported to directly reflect the 

objective optimized during temperature scaling. All calibration metrics are presented with 95% 

confidence intervals obtained via bootstrap resampling of the test set. 

 
Figure 7. Threshold trade-offs & utility (Sensitivity/Specificity/PPV + utility, θ* marked) 

Curves in Figure 7 show how sensitivity, specificity, and PPV vary with the decision threshold θ, 

alongside a utility function that balances sensitivity and specificity while penalizing abstentions/referrals. 

As θ increases, sensitivity typically falls while specificity and PPV rise. The vertical dotted line marks θ*, 

where utility is maximized for the chosen weights. This figure helps select an operating point suited to 

clinical priorities for instance, leaning toward higher sensitivity in early detection programs or 

prioritizing PPV to reduce unnecessary referrals while explicitly visualizing the trade-offs. 

Figure 8 illustrate Robustness vs. severity (photometric/occlusion): PNG Lines plot AUROC and 

AUPRC, which simulate real-world problems including lighting shifts, color cast, blur, or partial 

occlusions, across increasing perturbation severity (none → mild → moderate → severe). Although the 

slopes are mild, suggesting gentle decay, both ratings gradually decrease as severity rises. Since PR is 

more susceptible to class imbalance, AUROC usually stays higher than AUPRC. These findings confirm 

augmentation and design decisions (e.g., texture cues) that promote robustness. Deployment restrictions, 

image quality assessments, and possible pre-capture instructions for field use are all informed by the 

robustness profile. 

Domain shift (Lips↔Tongue, with/without alignment) is seen in Figure 9: PNG Cross-site 

generalization is shown by grouped bars: practice on lips, test on tongue (and vice versa). When 

domain-adversarial alignment is used, AUROC recovers by about five to six points, reducing the 

difference between in-domain and cross-domain performance. Without alignment, AUROC decreases 

during domain shift. This demonstrates how learnt traits become more pathology-centric and less 

site-specific. Clinically, greater cross-site robustness means more consistent outcomes when picture 
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composition, texture, or color distribution vary across anatomical site or clinic settings, reducing 

performance surprises during practical deployment. 

 
Figure 8. Robustness vs. severity (photometric/occlusion) 

 
Figure 9. Domain shift (Lips↔Tongue, with/without alignment) 

 

5. Discussion 

To directly evaluate cross-site generalization, we conducted a leave-one-site-out analysis in which 

the model was trained exclusively on lip images and evaluated on tongue images, and vice versa. 

Performance metrics with confidence intervals are reported to quantify robustness under this strict 

distribution shift. 

Table 1. Overall Discrimination & Calibration (Test). Accuracy, Macro-F1, AUROC, AUPRC, Brier, 

ECE (pre/post temperature scaling) 

 Accuracy Macro-F1 AUROC AUPRC Brier 
ECE 

(Pre) 

ECE 

(Post) 

Test 0.892 0.883 0.912 0.884 0.092 0.067 0.031 

Table 1 demonstrates that the model is reliable and accurate. Macro-F1 0.883 and accuracy 0.892 

show balanced performance as opposed to majority-class victories. Strong ranking ability is confirmed by 

AUROC 0.912, and robustness under class imbalance is demonstrated by AUPRC 0.884. Good 

probabilistic quality is reflected in the Brier score of 0.092. Expected Calibration Error lowers from 0.067 
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(pre-calibration) to 0.031 after temperature scaling—roughly half miscalibration supporting reliable 

thresholding and utility analysis. All things considered, the system works effectively for risk-conscious 

screening and referral choices. 

Error analysis indicates that most misclassifications occur in images with subtle lesions, strong 

illumination artefacts, or limited visual contrast between malignant and normal tissue. In some cases, 

attention maps reveal sensitivity to anatomical differences between lip and tongue regions or to 

camera-induced artefacts, highlighting the challenges of learning robust localization cues without 

pixel-level supervision. These observations motivate future work on improved localization constraints 

and more diverse training data. 

While lip and tongue anatomy differs substantially, the adversarial alignment encourages the 

shared representation to reduce sensitivity to site-specific visual patterns that do not generalize across 

domains. Nevertheless, complete invariance to anatomical or device-related cues cannot be guaranteed, 

and performance under more heterogeneous clinical conditions remains an important direction for future 

validation. 

Table 2. Site-Wise Metrics (Δ vs. Overall) 

Site AUROC ΔAUROC AUPRC ΔAUPRC F1 ΔF1 
ECE 

(Post) 

Lips 0.922 0.01 0.893 0.009 0.892 0.009 0.029 

Tongue 0.902 -0.01 0.874 -0.01 0.874 -0.009 0.033 

 

Table 3. Class-Wise Metrics 

Class Precision Recall F1 Support 

Positive 0.881 0.862 0.871 105 

Negative 0.9 0.909 0.905 195 

Site-Wise Metrics (Δ vs. Overall) are shown in Table 2. Small, regular gaps are visible when 

disaggregated per acquisition site. Lips perform better than tongue by approximately one AUROC point 

(0.922 vs. 0.902), one AUPRC point (0.893 vs. 0.874), and approximately one F1 point (0.892 vs. 0.874). 

Both have low post-calibration ECE (0.029 lips; 0.033 tongue), suggesting consistent probability across 

sites. The deltas measure residual domain shift, which most likely reflects variations in morphology, 

texture, and illumination, supporting domain alignment during training. Crucially, both sites retain 

AUROC ≥0.90 with strict calibration, meaning that judgements are consistent regardless of the source of 

the image. 

Class-wise Metrics (Positive/Negative) are shown in Table 3. The majority of malignant lesions are 

recognised with a moderate false-positive rate for cancer (Positive), with precision 0.881 and recall 0.862 

yielding F1 0.871 across 105 instances. Precision 0.900 and recall 0.909 yield F1 0.905 over 195 cases for 

non-cancer (Negative) images; benign/normal images are accurately removed at high rates. Under 

conservative thresholds and mild class imbalance, the asymmetry (increased negative recall) is expected. 

When combined with calibrated probabilities and an abstention policy for doubtful instances, this 

combination clinically lowers missed cancers while maintaining acceptable levels of wasteful referrals. 

At inference, predictions are first filtered using an entropy threshold τ to abstain on 

high-uncertainty cases. For non-abstained samples, a probability threshold θ* is applied to produce the 

final binary decision. Both τ and θ* are selected on the validation set by maximizing expected clinical 

utility under asymmetric error costs. 

Table 4. Ablation & Fusion Contribution. Baseline CNN, +Texture branch, +CAM-consistency, 

+Domain-alignment; report ΔAUROC, ΔAUPRC, ΔECE, Params, MACs 

Model AUROC ΔAUROC AUPRC ΔAUPRC 
ECE 

(Post) 
ΔECE 

Params 

(M) 

MACs 

(G) 

Baseline CNN 0.872 0 0.834 0 0.05 0 5.6 0.52 

+Texture branch 0.892 0.02 0.856 0.022 0.042 -0.008 5.8 0.55 

+CAM-consistency 0.902 0.03 0.868 0.034 0.036 -0.014 5.8 0.55 

+Domain-alignment 0.912 0.04 0.884 0.05 0.031 -0.019 5.9 0.56 
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(Full) 

Table 4 shows the contribution of ablation and fusion. Every design decision is validated by 

step-by-step analysis. With ECE 0.050, the baseline CNN obtains AUROC/AUPRC 0.872/0.834. With a 

small compute cost (+0.2M parameters, +0.03G MACs), the lightweight texture branch improves 

calibration (ECE −0.008) and produces +0.020/+0.022 AUROC/AUPRC. Additionally, CAM-consistency 

improves reliability and discrimination (ECE 0.036).The full model with domain alignment performs best 

(AUROC 0.912, AUPRC 0.884, ECE 0.031) with minimal overhead (5.9M params, 0.56G MACs). Gains are 

cumulative and complementary, confirming synergy between texture cues, focused attention, and 

domain alignment. 

The ablation experiments are structured as a progressive baseline ladder. We begin with a 

single-branch CNN trained using the same pre-processing and data splits as the full model. Texture 

features are then added to form the dual-branch architecture, followed by the introduction of 

CAM-consistency regularization, and finally domain alignment. Each stage modifies only one component 

while keeping all others fixed, enabling direct attribution of performance gains to the corresponding 

architectural addition. 

To assess whether CAM-consistency encourages attention to clinically relevant regions, 

representative activation maps are visualized for both correct and incorrect predictions. In correctly 

classified cases, attention is predominantly concentrated on visible lesion regions, while failure cases 

often show diffuse or anatomically misplaced activations, such as emphasis on surrounding healthy 

tissue or image borders. These examples illustrate both the strengths and limitations of CAM-based 

guidance under weak supervision. 

Table 5. Operating Points & Clinical Utility. Threshold θ values → Sensitivity, Specificity, PPV, NPV, 

Coverage (1–abstain), Referral rate, besides chosen θ* maximizing utility 

θ Sensitivity Specificity PPV NPV Coverage 
Referral 

Rate 

Utility 

(β=0.7, 

κ=0.15) 

Chosen 

θ* 

0.3 0.928 0.764 0.788 0.919 0.862 0.138 0.829  

0.5 0.892 0.852 0.846 0.897 0.872 0.128 0.874 ✓ 

0.7 0.836 0.902 0.863 0.881 0.881 0.119 0.862  

Table 5 represents the Operating Points & Clinical Utility Threshold comparisons include 

abstention effects. At θ = 0.30, sensitivity is highest (0.928) but specificity drops (0.764), increasing false 

positives besides referrals (13.8%), lowering utility. At θ = 0.70, specificity improves (0.902) but sensitivity 

falls (0.836), risking missed cancers. The chosen θ* = 0.50 maximizes the stated utility (0.874), balancing 

sensitivity (0.892) besides specificity (0.852) with strong PPV/NPV (0.846/0.897), stable coverage (87.2%), 

and moderate referral (12.8%). This is a pragmatic default; clinics can adjust θ to emphasize sensitivity or 

precision depending on workflow. Coverage refers to the proportion of non-abstained predictions after 

applying τ and is reported independently from classification performance at θ*. 

Compared to previously report oral cancer detection approaches that rely on single-branch 

convolutional models or handcrafted feature pipelines, the proposed dual-branch framework 

demonstrates a consistent improvement in both discrimination and calibration. In particular, the 

achieved AUROC and confidence calibration metrics exceed those typically reported for image-only oral 

cancer classifiers evaluated on small-scale clinical datasets, indicating the benefit of combining 

complementary texture and global representations with confidence-aware fusion. 

 

6. Conclusions 

The suggested dual-branch, confidence-calibrated outline improves photo-based oral cancer 

screening by combining complementing visual cues, targeted regularization, besides clinically aligned 

decision-making.  On the test set for tongue and lip imagery, model scores AUROC 0.912 and AUPRC 

0.884, with accuracy of 0.892 in addition to Macro-F1 0.883.  By reducing miscalibration by half (ECE 

0.067 → 0.031), scaling temperature improves dependability of probability-based referral decisions.  The 

model is robust (Lips AUROC 0.922; Tongue 0.902), according to site-specific analysis results, and it also 
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shows good post-calibration ECE, indicating consistent performance at several anatomical locations.  

Ablation validates the design decisions: domain alignment lowers the computational cost for site shift, 

while CAM-consistency and the texture branch enhance focus and discrimination. The system achieves a 

pragmatic configuration for screening workflows that prioritize early detection with controlled referral 

load at the utility-maximizing θ* = 0.50, with Sensitivity 0.892, Specificity 0.852, PPV 0.846, NPV 0.897, 

Coverage 87.2%, and Referral 12.8%. The dataset used in this study is limited in size and originates from 

a single public source, which may restrict generalizability. Model performance is also influenced by 

image quality and acquisition variability. Validation on larger and more diverse clinical cohorts is 

therefore required. 

 Future scope and future directions – Improving capacity and being ready for clinical use are the 

next objectives. To begin, enhance saliency accuracy and enable size/shape biomarkers by incorporating 

lesion-aware pre-segmentation or promotable SAM-style masks. Secondly, include longitudinal tracking 

for response monitoring and expand the level of classification granularity beyond binary (e.g., 

leukoplakia/erythroplakia/dysplasia). Third, to utilize the abundance of unlabeled clinic photos and 

improve data efficiency, pursue semi-supervised and self-supervised pre-training. Fourth, incorporate 

automated quality checks to identify useless images; fortify resilience with targeted enhancements and 

test-time adaptation for device, lighting, and pose variability. Fifthly, for low-latency offline screening, 

bundle an on-device variant (MobileNetV3 + INT8 quantization) and keep a cloud option for heavy 

analytics. Lastly, it is recommended to use demographic fairness auditing in prospective, multi-site 

evaluations. Then, include CAM overlays and threshold-dependent PPV/NPV guidance in 

clinician-facing reports that incorporate calibrated risk outputs. Taken as a whole, these upgrades have 

the potential to make the suggested system an effective, scalable part of oral cancer screening and triage 

procedures. 
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