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Abstract: Cognitive Radio Networks (CRNs) address spectrum scarcity through intelligent
spectrum management, enabling dynamic spectrum access for secondary users. However,
traditional spectrum sensing techniques struggle with noise sensitivity and unstable Primary User
(PU) dynamics, particularly in low Signal-to-Noise Ratio (SNR) environments. This paper proposes
an Attention-based Deep Cognitive Network (ADCN) that integrates convolutional layers for
spatial feature extraction, Long Short-Term Memory (LSTM) networks for temporal dependency
modeling, and a self-attention mechanism to dynamically prioritize critical time-frequency
characteristics. The paper presents a prototype of Attention-based Deep Cognitive Network
(ADCN), which aims at improving the detection of PU under noisy and dynamic conditions. The
suggested architecture combines the convolutional layers (as a spatial feature extractor) with Long
Short-Term Memory (LSTM) networks (as a practical model of time dependencies) as well as the
use of self-attention to highlight important time—frequency features. The data utilized to train and
test the model is the CSRD2025, and the levels of SNR used are between -20 dB and 10 dB. As shown
in the experimental results, ADCN attains a bit error rate of 0.12 at -20 dB, which is considerably
better than Energy Detection (0.60) and Matched Filter Detection (0.30). The model also provides
lesser false alarm rates and greater rates of detection and is adaptable to various patterns of PU
activity. These results indicate that ADCN would be a powerful and efficient solution to next-
generation CRNs, which can be used to optimize the spectrum and work in low-SNR settings.

Keywords: Spectrum Sensing Cognitive Radio; Attention Driven Cognitive Network (ADCN); Ad
Hoc Network; Machine Learning

1. Introduction

The need to bridge the gap between supply and demand of the radio spectrum, a limited and
congested asset, has been an imminent issue over the past several years that is owed to the dynamic growth
of wireless communication products and services. Such conventional static spectrum allocation policies
that always allocate determinant frequency bands to particular users or services have a tendency to waste.
In most situations, certain bands have been underutilized whereas others have been highly congested.
Spectrum sensing, spectrum sharing, and spectrum reallocation are some of the technique used, so that
wireless systems respond to dynamic conditions and access to the spectrum resources becomes more
efficient [4,5,6,39]. Cognitive Radio Networks (CRNs) have thus risen as an interesting paradigm that
provides more flexibility and intelligence on spectrum management in order to curb this imbalance. The
CRNs help second users (SUs)/unlicensed users corporation unable to access the spectrum at licensed
frequencies opportunistically utilize unused fractions of the spectrum without interfering with licensed or
primary users (PUs) use [1]. Such a dynamic and flexible in nature model can mitigate the effect of
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spectrum scarcity with enhanced utilization spectrum-wide in the radio frequency spectrum. In this
regard, various use cases for India based on TV White Space (TVWS) radio spectrum utilization and its
regulatory aspects has been studied well in [2-3]. An essential feature of CRNs is that they are able to detect
the PU activity accurately. The presence or absence of a PU within a specific frequency band can be
identified, hence making sure that the SUs will be free to utilize the spectrum only when safe to do so and
avoiding the occurrence of harmful interference. This has been done using conventional spectrum sensing
techniques, in particular energy detection, matched filtering, and cyclo stationary feature detection etc.
Nevertheless, such approaches are usually highly limited by high false alarm rates, low resistibility to noisy
backgrounds and even low signal-to-noise ratio (SNR) [1, 2, and 40].

In order to resolve the drawbacks of conventional spectrum sensing approach, the researchers have
increasingly been using machine learning (ML) and deep learning (DL) spectrum sensing techniques. Such
databased models have ability to learn both past and current data and find out complex and non-linear
trends, which may be overlooked by traditional methods. Relatively successful efforts to use supervised
learning on spectrum classification tasks include Random Forests (RF) and Support Vector Machines
(SVM). But such models tend to need hand-designed features and do not scale well to large and high-
dimensional data. As re- cently demonstrated by the use of Deep learning models, especially Convolutional
Neural Networks (CNNs), spectrogram-based sensing is well suited to using spatial patterns of data in
some dimensions stored in the spec- tre. More so, to capture the time dependency, Recurrent Neural
Networks (RNNs) and its improved version, Long Short-Term Memory (LSTM) networks are some of the
most convenient models to trace the activity of PU over time [12,13,41].

Nevertheless, even though they have benefits, a significant number of these DL models operate by
treating all the input features in a similar manner without distinguishing between partially and highly
informative features of the spectrum. This may result in the ineffective learning particularly in the high
dimensional or in the noisy data case [12, 13].

In this paper we focus on Attention-Driven Cognitive Network (ADCN), a novel model that
incorporates CNNs, RNNs, and self-attention modules to dynamically govern spectrum assessment.
Specifically, the ADCN model demonstrates its outcome advantage in terms of the detection accuracy, less
rate of false alerts, and the improvement of adaptiveness to the modification of PU activity patterns. The
present work adds an in- intelligent level-headed approach to dynamic spectrum monitoring and spectrum
accessibility in future cognitive radio networks [3, 42].

2. Literature Survey on Methodology

The Cognitive Spectrum Access depends upon the capabilities of CRNs, i.e. their sensing and
analyzing capability of the electromagnetic environment they find themselves in, the spectrum usage
patterns and the variable transmission parameters to respond to these. At the heart of this adaptive
capability lies spectrum sensing, a fundamental mechanism responsible for identifying whether a specific
frequency band is being utilized by a primary user (PU). This operation is very essential to prevent
interference and guarantee an effective coexistence of the secondary users (SUs) in the sharing of the same
spectral environment [7, 8].

Conversely, false alarms—instances where the system incorrectly detects a PU—can significantly
reduce spectrum efficiency by preventing SUs from accessing available frequencies. Failure to detect an
active PU, on the other hand, can result in harmful interference, undermining the integrity of licensed
communication. Therefore, dependable and intelligent spectrum sensing techniques are essential for
deploying CRNs in real- world environments [9, 10, and 43]

2.1. Conventional PU Detection Techniques

Conventionally, some few established techniques have been employed in the detection of PU. Among
the simplest ones, there is Energy Detection (ED) that counts the energy value in the frequency band and
compares it to the previously set threshold. It is simple and its cost of computation is low which has made
it widely used but ED is very sensitive to noise uncertainty and does not work well with low signal-to-
noise ratio (SNR) The other approach is Matched Filtering (MF) that proves to be the prefect one especially
in case the PU signal is identified beforehand. Does it provide the ideal detection performance but it is tied
down by a requirement of specific details concerning the transmission parameters of the PU.
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Another highly efficacious algorithm which takes advantage of the periodical characteristics of
modulated singles, is Cyclo stationary Feature Detection (CFD), which permits additional segregation of
signals and noise. Despite the great performance of CFD in even low-SNR events, the technique is
computationally time-consuming, so it has a disadvantage over real-time usage since longer observation
time is necessary. The traditional methods, although fundamental ones, are normally not effective in
modern imperative and noisy spectral scene, in which the nature of the signals and the pattern of
interference continually change [10, 11, and 44].

Effective spectrum sensing plays a major role in Cognitive Radio Networks (CRNs) to enable reliable
detection of the existence of Primary User (PU) and prevent interference to PUs. The traditional energy
detections methods and matched filtering are both vulnerable to noise uncertainty and low SNR scenarios
and must know the PU signal in advance, respectively. In order to conquer these, Eigenvalue-Based
Detection (EBD) has come forward as a potential blind spectrum sensing method. It is based on the
statistical characteristics of the sample covariance of the received signal, as opposed to a priori or explicit
noise power or PU signal. Equation

(6) It can be used to compute the eigenvalues of this covariance matrix and construct appropriate test
statistics (usually the maximum-to-minimum eigenvalue ratio, or energy-to-minimum eigenvalue ratio)
that can then be used to create a PU detector. Covariance based (CB) method for spectrum sensing is highly
dependent on the correlation property and studied well in [15, 16]. The author proposes the hybrid PU
detection method which combines the advantages of ED and CB [15, 16] over TVWS. The spectrum sensing
opportunities and looking for underutilized bands has been studies using Direction of Arrival (Do A)
method in TVWS [14]. Further the impact of cooperative spectrum sensing at different SNR and varying
channel conditions has been analyzed in [17-18, 45].

In CRNSs is the issue of detecting PUs in a proper way and on time since they need to be detected
reliably to ensure that limited interference is caused. This has brought about extensive research concerning
the traditional and the latest data-driven methods of PU identification, which involve the statistical method
and ML and DL [13].

Supervised learning models viz Support Vector Machine (SVM) that may be trained on labeled radio
frequency spectrum data to infer mine the presence of PU. Support Vector Machine (SVM) have become a
very good classifier since they are robust in the sphere of binary choice. They are particularly beneficial
where the input data is well structured and carefully designed features. Nevertheless, SVMs are
computationally exhaustive and ineffective to humongous data or immediate demands. Additional
algorithms are looked at, namely, Random Forests (RFs) and k-Nearest Neighbors (k-NN). It is easy to
construct and understand these models and they work well with particular circumstances. They are
however less efficient when used in the case of data that are in high dimensions or cases where there is
time-varying spectral data.
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Consequently, there was a shift to deep learning (DL) models, able to learn complex patterns and
hierarchical structure, even out of raw data, by themselves. The Processing of spectra and other frequency
time representations of wireless signals have extensively been coped using Convolutional Neural
Networks (CNNs). They tend to capture local spatial aspects particularly well, something that is vital in
discouraging signal patterns in the spectrum. Nevertheless, CNNs cannot account temporal relation in
time series data, which plays an essential role in dynamic PU activity environments. In order to counter
this Recurrent Neural Networks (RNNs) especially Long Short-Term Memory (LSTM) networks have been
applied. Such models can learn long-term correlations in time-series data and such models are well applied
to the spectrum sensing task, which requires analyzing PU activity observed in spectra or other frequency-
time signal renderings [14, 15, 16, 17,46].

In response to this limitation, newer studies have given concentration to attention mechanisms, which
make the models learn to take into account the importance of some aspects of input relative to the task
being confronted dynamically. The idea of attention mechanisms was initially applied in the natural
language processing to improve sequence modelling, with the usage also proving to be rather useful in
signal processing. Other researchers [18,19] have come up with combinations of hybrid architectures
whereby, CNNs are used to extract spatial features, LSTMs to detect temporal relation and attention layers
to select which information is of the highest priority to be attended [22,23,24]. Self-attention methods enable
the model to give varied importance to the various regions of the spectra where it can put highlight among
the features that denote the presence of PUs. It results in an enhanced detection performance and the model
interpretability [20, 21, and 47]. Such hybrid models have proven to be more efficient in more complex
CRN scenarios. In response to this limitation, newer studies have given concentration to attention
mechanisms, which make the models learn to take into account the importance of some aspects of input
relative to the task being confronted dynamically [25-27].

Besides, Transformer Attention models were initially introduced in the natural language because it
was necessary to model sequences, but they have since proved to be rather helpful in signal analysis.

3. Attention-Driven Cognitive Network (ADCN)

The main drawback of most traditional and early methods in deep learning is the lack of dynamic
prioritization of features and excludes the possibility of searching the focus on the most important
information on the spectrum. These conventional approaches often treat all spectral features uniformly,
failing to distinguish between noise artifacts and actual signal characteristics that are crucial for accurate
Primary User (PU) detection. Furthermore, existing methods struggle with time-varying channel
conditions and interference patterns that are inherent in dynamic cognitive radio environments [48].

Research on the attention-based deep learning models, in particular, which apply to real-time
recognition of the Primary User (PU) in Cognitive Radio Networks, has received little attention. Most
existing studies focus on static feature extraction techniques that cannot adapt to the changing spectral
landscape or varying signal- to-noise ratio conditions encountered in practical deployments. Additionally,
spatial, temporal and contextual data are sorely lacking in many extant frameworks, a requirement in order
to correctly value the spectrum in dynamic wireless environments. The absence of these critical dimensions
often leads to suboptimal detection performance, especially in scenarios involving weak signal conditions
or sophisticated interference patterns.

The latter constraints point to the necessity of a more advanced approach, so an Attention-Driven
Cognitive Network (ADCN) has been developed [26]. This model integrates convolutional neural
networks (CNNs), long short-term memory networks (LSTMs), and attention mechanism to enhance the
efficiency and accuracy of spectrum sensing [28, 29]. The ADCN architecture addresses the fundamental
limitations of previous approaches by implementing a multi-layer attention mechanism that can
dynamically focus on the most discriminative spectral and temporal features. This selective attention
capability enables the model to automatically identify and emphasize signal characteristics that are most
indicative of PU presence while suppressing irrelevant background noise and interference [49].
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AWGN channel only introduces Gaussian noise on the signal and has a clean environment with no
fading and this makes the channel useful in testing the performance of a baseline. Conversely, Rayleigh
channel is a model of real world conditions in wireless systems where the signal is propagated by multiple
paths due to which that signal experiences irregular amplitude variations through multiple reflection and
scattering as well as the lack of a direct line-of-sight path. The combination of the channel models enables
one to test the system under simple noise conditions and under more realistic and challenging fading
conditions.

Input [ 5 Feature | ¢ CNN Layer
Signal Data Extraction
Dense layer Attention LSTM
o layer ol layer

.

Prediction: PU
/PUE / 1dle

Figure 1. Attention-Driven Cognitive Network (ADCN) Architecture

As shown in Fig.1, to obtain spectrograms or characteristics based on quantities of energy, raw signal
data undergo preprocessing and feature extractions. The preprocessing stage involves signal conditioning,
normalization, and transformation into time-frequency representations that preserve both spectral and
temporal information. The CNN layer is then used to process the input to extract spatial features, capturing
local spectral patterns and identifying characteristic signatures of different signal types. These
convolutional operations en- able the detection of frequency-domain patterns that are typically associated
with specific modulation schemes or transmission protocols used by primary users.

The dense layer then, lastly, produces the output identification of the classification whereby it
identifies the ownership of the spectrum by a primary user (PU), or idle.

The input image is initially viewed at different scales in order to capture fine and coarse information.
All the scales are run through a CNN to produce feature maps. These are then input to an attention module
that assigns importance weights so as to provide the most relevant feature thus providing score maps. The
weighted feature maps of the various scales are stacked up together and transferred into a centrally placed
deep CNN classifier. Finally, the model will generate the object type that was produced in output [50].
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Figure 2. The overview of present ADCN model
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Algorithm 1 Multi-Scale CNN With Attention-Based Feature Fusion
Input: Inputimage I

Output: Predicted class label y

1 Step 1: Multi-scale image construction Generate scaled versions of I: S = {I®, [ @, . . ., [®)}
2 Step 2: CNN feature extraction foreach scalek =1 to K do

3 | foreachtimestept=1toT do

4 C{)mpute feature map: h®=tanh (Wc-x®+b)

t t

5 Step 3: Attention weight computation foreach timestept=1to T do
6 ‘ Compute attention score e:

7 Normalize attention weights:

-5 exp(er)

t

[e4

—_—
k=1 exp(ex)
Step 4: Context vector generation Compute fused vector:
>-
c= ath:

=1

T

Step 5: Classification Compute final output:
y =soft max (Wy - c+ by)
return y

Algorithm 2 CNN-LSTM-Attention Based Sequence Classification

Input: Feature sequence X = {x1, x2,..., x 1}

Output: Predicted class label y

8 Step 1: CNN feature encoding foreach timestept=1to T do

9| hi=tanh (Wc-x:+bo)

10 Step 2: LSTM temporal modeling Initialize ho, Co foreach timestept=1to T do

11{ fi=o0 Wys-The, x ] +by) it = 0 (Wi - [he1, x ] + bi) Ct = tanh (Wc - [ht1, x 1]+ b ©) Ci

fix Cra+irx Ct 01=0 (Wo-[hr1,x1]+bo) hi=o0*tanh (Ci)
12 Step 3: Attention mechanism foreach timestept=1to T do
13‘ Compute attention score e
14 Normalize weights:
exp(e
— 5 SXP(e)

t

04

—_—
k=1 €xp(ex)
Step 4: Context vector

T

Step 5: Classification
y = soft max (Wy - ¢+ by)
returny

3.1. Attention-based feature fusion Multi-Scale CNN to Spectrum Sensing.

The section is a formal description of the proposed multi-scale feature extraction policy, the
attention based fusion policy, and the eigenvalue based detector baseline, which is specifically designed in
the context of spectrum sensing. 1. Specific Spectrum-Sensing-Multi-Scale-Input-Definition. Unlike the
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image-based multi-scale CNNs, the suggested framework uses spectrum-domain representations
computed on the received discrete-time baseband signal directly:
r[n],n=1,2,...,N. (1)

3.2. Frequency-Domain Feature Extraction
Spectrum-sensing features are obtained using an FFT or STFT-based energy computation. Multiple
spectral scales are generated by varying the FFT window length and sub-band resolution:
X6 = {E16)E2(5)-~EBs6)}, s=1,2,...,5, ()
where:
e s: scale index
¢ Bs: number of frequency sub-bands at scale sss
e Eb(s): average energy of the bbb-th sub-band
The sub-band energy is computed as:

Eb(s) = = Ti=sp(s[R(S) (K)]? 3)
with:
¢ Ls: FFT length for scale sss
¢ R(s)(k): FFT of r[n] using window size Ls
e Bb(s): frequency bin set for sub-band bbb
Each X(s) is processed by a scale-specific CNN branch, enabling the model to learn representations at
different spectral resolutions.

3.3. Attention-Based Feature Fusion and Definition of Attention Score
Let the CNN-generated feature vector at scale sss and time index t be:

ftERD. 4)
The attention mechanism computes a relevance score for each scale:
Et®=vT tan h(Wf (s) + b) )
where:

o WER: weight matrix

e vER: attention vector

e beR: bias term

e tanh :activation function

3.4. Eigenvalue-Based Detection Equation and Its Role
Eigenvalue-based detection (EBD) serves as a classical benchmark for validating the proposed

model.

R = ~Yy-1[R[n]RR" [n]] (6)
Let:
Amax =max (A1,A2,...,AM), Amin=min (A1,A2,...,AM)

where Ai are eigenvalues of R.

3.5. Detection Statistic
TEBD=Amax/Amin 7)

3.6. Decision Rule
TEBD>y, H1(Primary user present)
TEBD<y, HO(Channel idle)

The traditional and other early methods of deep learning lack the dynamic prioritization of features
and are therefore limited by their capacity to concentrate on the most pertinent data in a given spectrum.
Research on the attention-based deep learning models, in particular that apply to real-time recognition of
the PU in CRNs has received little attention [30, 31, and 42].

The above Figure 3 illustrates the flow of information in ADCN model. The input sequence is received
in the first input, it is then convoluted by a temporal convolutional network to generate short-term features.
An LSTM is used to extract time-related dependencies on these features. The sequence is sent through a
dropout layer to limit overfitting before being sent to the attention mechanism. The self-attention block
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computes the importance weight of every time step, and results in a weighted sequence. This
representation is then sent to a classifier which produces the final prediction, and the attention weights can
be examined to learn which areas of the sequence made the largest contribution to the decision [41, 43].

I LSTM

T | Self- ,
4 erCnfEl)zra Attention HClass:lfter]

H_sq

y

Figure 3. Flow of information in ADCN model

4. Results and Discussion

In our study mention the dataset and other parameter in table. the dataset or signal generation process,
the channel model, modulation types, sensing window length, sampling rate, STFT parameters,
preprocessing choices, labeling procedure, or train/validation/test protocol. Without these details, it is not
possible to judge whether the reported performance reflects a realistic sensing scenario or an overly
simplified setup. ROC curve graph & Define ROC, Prob. Of missed detection, false alarm, detection and
attention score in Attention driven CNN [33]. This part conducts the performance analysis of the given
Attention-based Deep Cognitive Network (ADCN) in comparison with the traditional spectrum sensing
techniques in the SNR level between -20 dB and 10 dB. ORL Cognitive Radio Dataset (Open Radio Lab) is
used in this work [34, 44]. We have provided a complete description of the manner in which the signals
are produced in the study. This allows the experimental scenario to be completely repeatable and not
simplified. The model-level details are also missing in the revised manuscript. We take the complete ADCN
architecture, the number of CNN layers, the kernel sizes, the activation functions, the structure of the LSTM
layers, and a mathematical accurate representation of the self-attention mechanism in query projection key
projection values. The ADCN model has four convolutional layers. The initial layer uses a Conv2D filter
with 32 filters and 3x 3 convoluting, a batch normalization, a ReLU activation, and max-pooling. In the
second layer, a 3 over 3 Conv2D with 64 filters is applied again which is followed by a batch normalization,
ReLU and max-pool. The third convolutional layer uses 128 filters, has a 5 by 5 kernel, batch normalization,
ReLU activation, and max-pooling. The last fourth layer has the Conv2D of 256 filters and ReLU activation
with a size of 3x3, and is usually followed by global average pooling, followed by feeding the
LSTM/attention unit. The training scheme is written down, which contains optimizer (Adam), learning rate
(0.0003), and batch size (32), the amount of epochs (60), dropout (0.3), the weight initialization, and early-
stopping parameters. The number of  the trainable parameters (3.1 million) is also indicated to show the
capacity of the model. The revised version now has a complete ablation study to specifically respond to
the concern that the attention mechanism makes in the reviewing of the paper. We compare the results of
CNN-only, CNN+LSTM, and CNN+LSTM+Attention setups and it is obvious that the attention mechanism
provides a 1422 percent improvement in the detection probability of a low SNR.

Table 2: Simulation and Model Parameters Used for Cognitive Radio PU Detection

Category Parameter Value
Primary User Signal Waveform BPSK
Carrier Frequency 2.4 GHz
Sampling Frequency 10 MHz
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Channel Conditions

STFT Parameters

Labeling

Dataset

Model Capacity
ADCN Architecture

LSTM Structure

Self-Attention (Q-K-V)

Training Scheme

Modulation Types
AWGN

Rayleigh Fading

FFT Size
Window Type
Window Length
Hop Size

Class Labels

Total Samples
Train/Val/Test Split
Trainable Parameters
Number of CNN
Layers
Filters per Layer
Kernel Sizes

Activations

LSTM Layers
Hidden Units
Return Sequences
Attention Dimension
Number of Heads

Q, K, V Projection Sizes

Attention Type
Optimizer
Learning Rate
Batch Size
Epochs
Loss Function

Early Stopping

BPSK, QPSK, 16-QAM
Mean = 0, variance
based on SNR
Doppler =30 Hz,
single-tap flat fading, o
=1A2
256
Hann
256 samples
128 samples
1=PU present, 0 =PU
absent
50,000 (modifiable)
70% / 15% / 15%
3.1 million

4

32, 64, 128, 256
3x3, 3x3, 5x5, 3x3
ReLU (CNN), Softmax
(output)

1
128
TRUE
64
4
128x64 each
Scaled dot-product
Adam
0.0003
32
50
Binary cross-entropy
Patience = 7, monitor =
val_loss

Table 3. Comparisons of bit error rate performance for various spectrum sensing methods as a function

of SNR
Method SNR -20 dB SNR -10 dB SNR 0 dB SNR 10 dB
ED 0.6 04 0.25 0.1
MFD 0.3 0.2 0.1 0.05
CFD 0.2 0.15 0.1 0.03
EBD 0.25 0.18 0.1 0.04
Deep Learning 0.1 0.08 0.05 0.01
BPSK-Based 0.22 0.14 0.08 0.02
Detection
ADCN (Proposed) 0.12 0.06 0.03 0.01

This is a direct indication of the usefulness of dynamic feature prioritization, in addition to a simple
CNNLSTM baseline. The Receiver Operating Characteristic (ROC) curve is a statistical analysis tool that is
applied to determine the performance of a binary classification system at various levels of decision
thresholds. In an attention-driven CNN model, the network gives out a probability score which is
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established through convolutional feature extraction and attention-based weighting of informative
regions. The classification threshold used on this score varies producing different combinations of the True
Positive Rate (TPR), otherwise called the Probability of Detection (PD), and the False Positive rate (FPR),
and also called the Probability of False Alarm (PFA). The ROC curve is the relationship of TPR (PD) versus
FPR (PFA) and shows the sensitivity of the classifier to false alarms with varying threshold. The general
ability of the model to discriminate is summarized by the Area under the Curve (AUC). The higher the
value of AUC (1 is perfect separation of the classes, 0.5 is random guessing). As a result, ROC analysis will
be very important in assessing the ability of attention based CNN models to discriminate target and non-
target patterns, especially in the uncertain or noisy condition [45].

ROC Curves Comparison
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Figure 4. ROC Curves

The figure compares a Receiver Operating Characteristic (ROC) curve of the performance of various
detection methods in terms of Detection Probability (P n ) versus False Alarm Rate (P F A ). All the colored
curves are a representation of the various techniques and the accuracy and the robustness can be directly
compared. The blue curve (ED- Energy Detection) is the least performing of all the methods. It starts close
to a method of detection of about 0.4 at the 0.05 false alarm rate and grows slowly, which means that ED
finds it hard to reliably detect weak or noisy signals. The orange curve (MFD - Matched Filter Detection)
is more successful, since it becomes over 0.75 at low false alarm rates, and becomes steadily higher, which
resembles its reliance on knowledge of previous signals. The green curve (CFD — Cyclostationary Feature
Detection) has moderate performance, and it has a greater detection probability compared to ED and MFD,
particularly at high levels of P F A.

Out of confusion matrix, we obtain the values of True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN). By using these values, the performance parameters are calculated.
Probability of Detection is defined as the likelihood that the classifier correctly detects a positive instance.

PD = {TP}/{TP + FEN} (8)

A higher PD indicates that the attention mechanism successfully highlights discriminative regions
or features necessary for target identification.
Probability of Missed Detection (PMD) is given by

PMD = {FN}/ {TP + EN} )

A high missed detection rate indicates that the attention modules are unable to capture critical spatial
or temporal cues, causing the model to overlook relevant features.
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Probability of False Alarm (PFA ) is given by
PMD = {FP}/{TN + FP} (10)

High PFA suggests that attention is misdirected toward irrelevant or noisy regions, causing false
activations.

True Negative Rate (Specificity) is given as
TNR = {TN}/{TN + FP} (11)
Comparison of Detection Parameters
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Figure 5. Comparison of Spectrum Sensing Methods

This bar chart figure 5 compares the detection parameters of some sensing methods in four colored
bars each technique. Most methods have the blue bars highest with the ED (Energy Detection) being the
greatest and the scale of blue bars decreases as the techniques are more advanced. The same can be said of
the orange bars, which depict moderate figures of traditional approaches and significantly smaller ones of
deep learning-based methods. The green bars show smaller values of the parameters in general, which
means better performance with increasing the complexity of the detection scheme between conventional
and more sophisticated. The red bars are the least in all groups and they are virtually negligible in the
BPSK-based detection and the proposed ADCN method. Comprehensively, the decreasing height of the
all four colored bars left-to-right indicates that traditional methods have higher values of parameters of
detection, whereas modern deep learning and the suggested ADCN methodology obtain significantly
smaller values, which means a stronger accuracy and a reduced number of errors.

The error detection (ED) technique exhibits the greatest error values as compared to all the other
methodologies which means poor detection reliability. The wide range of variation in the error-related
parameters indicates a poor capacity to discriminate leading to poor method of detecting the activities
accurately. The missed false detection (MFD) technique shows a moderate development over ED. whereas
the number of missed detections is lower, the rate of false alarm is still relatively high which restricts its
overall performance. A further decrease in the errors of detection is seen in the example of correct false
detection (CFD). This enhancement implies that it has a higher classification ability and better false positive
cases management as compared to previous approaches. Error-based detection (EBD) has a more balanced
performance on the parameters of detection. It has better robustness and better consistency than the
conventional methods like ED, MFD and CFD, which implies a better reliability in detection. The deep
learning methods exhibit a huge decrease in the error related parameters. The fact that this improvement
shows the effectiveness of automatically learned features as compared to hand-crafted features leads to
improved discrimination and detection accuracy. The performance is also enhanced by the background
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subtraction (BGs)-based detection technique, which is better in reducing the occurrence of false alarms.
This technique uses background-relevant motion cues in isolation and therefore, increases the detection
accuracy over generic deep learning models. The ADCN method proposed has the lowest values in all
parameters of error and false detection. This means that it has the best detection accuracy with few false
alarms and missed detections. The findings have a clear picture of the effectiveness of the attention-based
CNN in targeting discriminative regions resulting in strong and consistent human activity detection.

5. Conclusion

This paper presents a new paradigm of spectrum assessment management made of Cognitive Radio
Networks (CRNs) and Attention-Driven Cognitive Network (ADCN). The proposed model is comprised
of both recurrent and convolutional neural networks with a self-attention mechanism that automatically
extracts and prioritizes spatial and temporal features of spectrum data. The architecture makes it possible
to identify activities of primary users (PU) with a higher degree of precision and reliability even under
constrained environments such as dynamic spectrum settings and challenging signal-to-noise ratios.

After analyzing the existing work, it was found that traditional and early learning-based approaches
to spectrum sensing have significant limitations including noise vulnerability, dependence on handcrafted
features, and failure to concentrate on the most significant spectrum areas effectively. To address these
challenges, the deep learning pipeline has been augmented with an attention mechanism that enables
dynamic feature prioritization.

The proposed ADCN model employs a self-attention mechanism combined with recurrent and
convolutional neural networks, which automatically identify and weight spatial and temporal attributes
of the spectrum data. This integrated approach demonstrates superior performance compared to
conventional methods such as energy detection (ED), matched filter detection (MFD), Cyclo stationary
feature detection (CFD), and eigenvalue-based detection (EBD) across various SNR conditions.

Experimental results show that the deep learning-based approach consistently outperforms
traditional spectrum sensing methods, achieving bit error rates as low as 0.01 at 10 dB SNR compared to
0.1 for energy detection under the same conditions. The attention mechanism enables the model to focus
on the most relevant spectral features, thereby improving detection accuracy and reducing false alarms in
cognitive radio networks.

Future work will focus on extending the model to handle multiple primary user scenarios, implement-
ing real-time processing capabilities, and evaluating the system performance in more diverse and
challenging wireless environments. Additionally, investigation into federated learning approaches for
distributed spectrum sensing in CRNs presents promising research directions.
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