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Abstract: Cognitive Radio Networks (CRNs) address spectrum scarcity through intelligent 

spectrum management, enabling dynamic spectrum access for secondary users. However, 

traditional spectrum sensing techniques struggle with noise sensitivity and unstable Primary User 

(PU) dynamics, particularly in low Signal-to-Noise Ratio (SNR) environments. This paper proposes 

an Attention-based Deep Cognitive Network (ADCN) that integrates convolutional layers for 

spatial feature extraction, Long Short-Term Memory (LSTM) networks for temporal dependency 

modeling, and a self-attention mechanism to dynamically prioritize critical time-frequency 

characteristics. The paper presents a prototype of Attention-based Deep Cognitive Network 

(ADCN), which aims at improving the detection of PU under noisy and dynamic conditions. The 

suggested architecture combines the convolutional layers (as a spatial feature extractor) with Long 

Short-Term Memory (LSTM) networks (as a practical model of time dependencies) as well as the 

use of self-attention to highlight important time–frequency features. The data utilized to train and 

test the model is the CSRD2025, and the levels of SNR used are between -20 dB and 10 dB. As shown 

in the experimental results, ADCN attains a bit error rate of 0.12 at -20 dB, which is considerably 

better than Energy Detection (0.60) and Matched Filter Detection (0.30). The model also provides 

lesser false alarm rates and greater rates of detection and is adaptable to various patterns of PU 

activity. These results indicate that ADCN would be a powerful and efficient solution to next-

generation CRNs, which can be used to optimize the spectrum and work in low-SNR settings. 

 

Keywords: Spectrum Sensing Cognitive Radio; Attention Driven Cognitive Network (ADCN); Ad 

Hoc Network; Machine Learning 

 

1. Introduction 

The need to bridge the gap between supply and demand of the radio spectrum, a limited and 

congested asset, has been an imminent issue over the past several years that is owed to the dynamic growth 

of wireless communication products and services. Such conventional static spectrum allocation policies 

that always allocate determinant frequency bands to particular users or services have a tendency to waste. 

In most situations, certain bands have been underutilized whereas others have been highly congested. 

Spectrum sensing, spectrum sharing, and spectrum reallocation are some of the technique used, so that 

wireless systems respond to dynamic conditions and access to the spectrum resources becomes more 

efficient [4,5,6,39]. Cognitive Radio Networks (CRNs) have thus risen as an interesting paradigm that 

provides more flexibility and intelligence on spectrum management in order to curb this imbalance. The 

CRNs help second users (SUs)/unlicensed users corporation unable to access the spectrum at licensed 

frequencies opportunistically utilize unused fractions of the spectrum without interfering with licensed or 

primary users (PUs) use [1]. Such a dynamic and flexible in nature model can mitigate the effect of 
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spectrum scarcity with enhanced utilization spectrum-wide in the radio frequency spectrum. In this 

regard, various use cases for India based on TV White Space (TVWS) radio spectrum utilization and its 

regulatory aspects has been studied well in [2-3]. An essential feature of CRNs is that they are able to detect 

the PU activity accurately. The presence or absence of a PU within a specific frequency band can be 

identified, hence making sure that the SUs will be free to utilize the spectrum only when safe to do so and 

avoiding the occurrence of harmful interference. This has been done using conventional spectrum sensing 

techniques, in particular energy detection, matched filtering, and cyclo stationary feature detection etc. 

Nevertheless, such approaches are usually highly limited by high false alarm rates, low resistibility to noisy 

backgrounds and even low signal-to-noise ratio (SNR) [1, 2, and 40]. 

In order to resolve the drawbacks of conventional spectrum sensing approach, the researchers have 

increasingly been using machine learning (ML) and deep learning (DL) spectrum sensing techniques. Such 

databased models have ability to learn both past and current data and find out complex and non-linear 

trends, which may be overlooked by traditional methods. Relatively successful efforts to use supervised 

learning on spectrum classification tasks include Random Forests (RF) and Support Vector Machines 

(SVM). But such models tend to need hand-designed features and do not scale well to large and high-

dimensional data. As re- cently demonstrated by the use of Deep learning models, especially Convolutional 

Neural Networks (CNNs), spectrogram-based sensing is well suited to using spatial patterns of data in 

some dimensions stored in the spec- tre. More so, to capture the time dependency, Recurrent Neural 

Networks (RNNs) and its improved version, Long Short-Term Memory (LSTM) networks are some of the 

most convenient models to trace the activity of PU over time [12,13,41]. 

Nevertheless, even though they have benefits, a significant number of these DL models operate by 

treating all the input features in a similar manner without distinguishing between partially and highly 

informative features of the spectrum. This may result in the ineffective learning particularly in the high 

dimensional or in the noisy data case [12, 13]. 

In this paper we focus on Attention-Driven Cognitive Network (ADCN), a novel model that 

incorporates CNNs, RNNs, and self-attention modules to dynamically govern spectrum assessment. 

Specifically, the ADCN model demonstrates its outcome advantage in terms of the detection accuracy, less 

rate of false alerts, and the improvement of adaptiveness to the modification of PU activity patterns. The 

present work adds an in- intelligent level-headed approach to dynamic spectrum monitoring and spectrum 

accessibility in future cognitive radio networks [3, 42].  

 

2. Literature Survey on Methodology 

The Cognitive Spectrum Access depends upon the capabilities of CRNs, i.e. their sensing and 

analyzing capability of the electromagnetic environment they find themselves in, the spectrum usage 

patterns and the variable transmission parameters to respond to these. At the heart of this adaptive 

capability lies spectrum sensing, a fundamental mechanism responsible for identifying whether a specific 

frequency band is being utilized by a primary user (PU). This operation is very essential to prevent 

interference and guarantee an effective coexistence of the secondary users (SUs) in the sharing of the same 

spectral environment [7, 8]. 

Conversely, false alarms—instances where the system incorrectly detects a PU—can significantly 

reduce spectrum efficiency by preventing SUs from accessing available frequencies. Failure to detect an 

active PU, on the other hand, can result in harmful interference, undermining the integrity of licensed 

communication. Therefore, dependable and intelligent spectrum sensing techniques are essential for 

deploying CRNs in real- world environments [9, 10, and 43] 

2.1. Conventional PU Detection Techniques 

Conventionally, some few established techniques have been employed in the detection of PU. Among 

the simplest ones, there is Energy Detection (ED) that counts the energy value in the frequency band and 

compares it to the previously set threshold. It is simple and its cost of computation is low which has made 

it widely used but ED is very sensitive to noise uncertainty and does not work well with low signal-to-

noise ratio (SNR) The other approach is Matched Filtering (MF) that proves to be the prefect one especially 

in case the PU signal is identified beforehand. Does it provide the ideal detection performance but it is tied 

down by a requirement of specific details concerning the transmission parameters of the PU. 
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Another highly efficacious algorithm which takes advantage of the periodical characteristics of 

modulated singles, is Cyclo stationary Feature Detection (CFD), which permits additional segregation of 

signals and noise. Despite the great performance of CFD in even low-SNR events, the technique is 

computationally time-consuming, so it has a disadvantage over real-time usage since longer observation 

time is necessary. The traditional methods, although fundamental ones, are normally not effective in 

modern imperative and noisy spectral scene, in which the nature of the signals and the pattern of 

interference continually change [10, 11, and 44]. 

Effective spectrum sensing plays a major role in Cognitive Radio Networks (CRNs) to enable reliable 

detection of the existence of Primary User (PU) and prevent interference to PUs. The traditional energy 

detections methods and matched filtering are both vulnerable to noise uncertainty and low SNR scenarios 

and must know the PU signal in advance, respectively. In order to conquer these, Eigenvalue-Based 

Detection (EBD) has come forward as a potential blind spectrum sensing method. It is based on the 

statistical characteristics of the sample covariance of the received signal, as opposed to a priori or explicit 

noise power or PU signal. Equation 

(6) It can be used to compute the eigenvalues of this covariance matrix and construct appropriate test 

statistics (usually the maximum-to-minimum eigenvalue ratio, or energy-to-minimum eigenvalue ratio) 

that can then be used to create a PU detector. Covariance based (CB) method for spectrum sensing is highly 

dependent on the correlation property and studied well in [15, 16]. The author proposes the hybrid PU 

detection method which combines the advantages of ED and CB [15, 16] over TVWS. The spectrum sensing 

opportunities and looking for underutilized bands has been studies using Direction of Arrival (Do A) 

method in TVWS [14]. Further the impact of cooperative spectrum sensing at different SNR and varying 

channel conditions has been analyzed in [17-18, 45]. 

In CRNs is the issue of detecting PUs in a proper way and on time since they need to be detected 

reliably to ensure that limited interference is caused. This has brought about extensive research concerning 

the traditional and the latest data-driven methods of PU identification, which involve the statistical method 

and ML and DL [13]. 

Supervised learning models viz Support Vector Machine (SVM) that may be trained on labeled radio 

frequency spectrum data to infer mine the presence of PU. Support Vector Machine (SVM) have become a 

very good classifier since they are robust in the sphere of binary choice. They are particularly beneficial 

where the input data is well structured and carefully designed features. Nevertheless, SVMs are 

computationally exhaustive and ineffective to humongous data or immediate demands. Additional 

algorithms are looked at, namely, Random Forests (RFs) and k-Nearest Neighbors (k-NN). It is easy to 

construct and understand these models and they work well with particular circumstances. They are 

however less efficient when used in the case of data that are in high dimensions or cases where there is 

time-varying spectral data.  

Table 1. Comparisons of Various Methods 

S. No Citation Year Methodology 

Key 

Features 

& 

Advances 

Advantages Limitations 

1 

Palacios Jaiti 

vaetal., Signal 

Detection 

Methods... 

2020 

Multiple methods 

comparison 

(Energy stationary, 

Matched filter) 

Empirical 

performa

nce 

benchmar

king in 

CRNs 

Offers

 practical 

Detection 

performance 

insights 

Limited to 

bench- 

mark 

scenarios 

2 

Furqan et al., 

PU Emula-

tion & 

Jamming 

Detection via 

Sparse Coding 

2020 
Sparse coding + 

ML classification 

Differenti

ates PU 

vs PUE vs 

jam- ming 

via signal 

High

 detectio

n 

accuracy,

 attack- 

aware 

Requires 

dictionary 

training, 

offline 
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dictionary 

patterns 

3 

Munoz et al., 

PUE Detection 

w/ SVM using 

USRP 

2020 

SVM-based PU 

emulation 

detection 

SDR

 testb

ed, 

kernel-

based 

classificati

on 

Good real-

world 

performance 

with SVM 

Comp

utation

ally 

heavier

 th

an 

energy 

detecti

on 

4 

Solanki et al., 

Coopera- 

tive Spectrum 

Sensing us- 

ing SVM 

2021 
Cooperative 

sensing + SVM 

Energy-

feature 

dataset, 

data 

balancing, 

multi-

node 

fusion 

Robust under 

fad- 

ing, improved 

ac- curacy 

Needs

 m

ultiple 

nodes,

 hi

gher 

overhe

ad 

5 

Chhetry & 

Mar chang, 

PUEA 

Detection via 

One- Class 

Classification 

2021 

One-class ML 

(Isolation Forest, 

LOF, one-class 

SVM, MCD) 

Uses 

fusion 

center 

data to 

detect 

anomalies 

No need for 

labeled 

malicious 

data 

Anoma

ly 

thresh- 

olds 

may 

vary, 

false 

positiv

es risk 

6 

Tawfik et al., 

Adaptive 

Behavior-

based 

Compressive 

Sensing 

2024 

Weighted 

sequential CS + PU 

behavior modeling 

Dynamica

lly 

modulates 

measurem

ents based 

on PU 

stats 

Lower 

sensing time 

& 

measurement

s 

Relies 

on 

accurat

e PU 

behavi

or 

estimat

ion 

7 

Evaluation of

 PUEA 

via Neyman 

Pearson & 

WSPRT 

2023 

Statistics detection

 (NPHT, 

WSPRT) 

Compare

d 

hypothesi

s testing 

schemes 

NP is low 

false- 

alarm with 

high at- tacker 

density 

WSPR

T  

perfor

mance 

drops 

under 

attack; 

only

 th

reshold 

tested 

8 

Multiple PUE 

Attack 

Detections w/ 

DNN & 

Energy 

2023 

DNN + energy 

detection + device 

authentication 

Grid-

based 

energy 

High PD 

(∼92%), 

supports

 mobile 

SU scenarios 

Not

 ex

plicitly 

mentio

ned 
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+ 

Authenticatio

n 

mapping 

+ DNN 

classifier 

Consequently, there was a shift to deep learning (DL) models, able to learn complex patterns and 

hierarchical structure, even out of raw data, by themselves. The Processing of spectra and other frequency 

time representations of wireless signals have extensively been coped using Convolutional Neural 

Networks (CNNs). They tend to capture local spatial aspects particularly well, something that is vital in 

discouraging signal patterns in the spectrum. Nevertheless, CNNs cannot account temporal relation in 

time series data, which plays an essential role in dynamic PU activity environments. In order to counter 

this Recurrent Neural Networks (RNNs) especially Long Short-Term Memory (LSTM) networks have been 

applied. Such models can learn long-term correlations in time-series data and such models are well applied 

to the spectrum sensing task, which requires analyzing PU activity observed in spectra or other frequency-

time signal renderings [14, 15, 16, 17,46]. 

In response to this limitation, newer studies have given concentration to attention mechanisms, which 

make the models learn to take into account the importance of some aspects of input relative to the task 

being confronted dynamically. The idea of attention mechanisms was initially applied in the natural 

language processing to improve sequence modelling, with the usage also proving to be rather useful in 

signal processing. Other researchers [18,19] have come up with combinations of hybrid architectures 

whereby, CNNs are used to extract spatial features, LSTMs to detect temporal relation and attention layers 

to select which information is of the highest priority to be attended [22,23,24]. Self-attention methods enable 

the model to give varied importance to the various regions of the spectra where it can put highlight among 

the features that denote the presence of PUs. It results in an enhanced detection performance and the model 

interpretability [20, 21, and 47]. Such hybrid models have proven to be more efficient in more complex 

CRN scenarios. In response to this limitation, newer studies have given concentration to attention 

mechanisms, which make the models learn to take into account the importance of some aspects of input 

relative to the task being confronted dynamically [25-27]. 

Besides, Transformer Attention models were initially introduced in the natural language because it 

was necessary to model sequences, but they have since proved to be rather helpful in signal analysis. 

 

3. Attention-Driven Cognitive Network (ADCN) 

The main drawback of most traditional and early methods in deep learning is the lack of dynamic 

prioritization of features and excludes the possibility of searching the focus on the most important 

information on the spectrum. These conventional approaches often treat all spectral features uniformly, 

failing to distinguish between noise artifacts and actual signal characteristics that are crucial for accurate 

Primary User (PU) detection. Furthermore, existing methods struggle with time-varying channel 

conditions and interference patterns that are inherent in dynamic cognitive radio environments [48]. 

Research on the attention-based deep learning models, in particular, which apply to real-time 

recognition of the Primary User (PU) in Cognitive Radio Networks, has received little attention. Most 

existing studies focus on static feature extraction techniques that cannot adapt to the changing spectral 

landscape or varying signal- to-noise ratio conditions encountered in practical deployments. Additionally, 

spatial, temporal and contextual data are sorely lacking in many extant frameworks, a requirement in order 

to correctly value the spectrum in dynamic wireless environments. The absence of these critical dimensions 

often leads to suboptimal detection performance, especially in scenarios involving weak signal conditions 

or sophisticated interference patterns. 

The latter constraints point to the necessity of a more advanced approach, so an Attention-Driven 

Cognitive Network (ADCN) has been developed [26]. This model integrates convolutional neural 

networks (CNNs), long short-term memory networks (LSTMs), and attention mechanism to enhance the 

efficiency and accuracy of spectrum sensing [28, 29]. The ADCN architecture addresses the fundamental 

limitations of previous approaches by implementing a multi-layer attention mechanism that can 

dynamically focus on the most discriminative spectral and temporal features. This selective attention 

capability enables the model to automatically identify and emphasize signal characteristics that are most 

indicative of PU presence while suppressing irrelevant background noise and interference [49]. 
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AWGN channel only introduces Gaussian noise on the signal and has a clean environment with no 

fading and this makes the channel useful in testing the performance of a baseline. Conversely, Rayleigh 

channel is a model of real world conditions in wireless systems where the signal is propagated by multiple 

paths due to which that signal experiences irregular amplitude variations through multiple reflection and 

scattering as well as the lack of a direct line-of-sight path. The combination of the channel models enables 

one to test the system under simple noise conditions and under more realistic and challenging fading 

conditions. 

 

 
Figure 1. Attention-Driven Cognitive Network (ADCN) Architecture 

As shown in Fig.1, to obtain spectrograms or characteristics based on quantities of energy, raw signal 

data undergo preprocessing and feature extractions. The preprocessing stage involves signal conditioning, 

normalization, and transformation into time-frequency representations that preserve both spectral and 

temporal information. The CNN layer is then used to process the input to extract spatial features, capturing 

local spectral patterns and identifying characteristic signatures of different signal types. These 

convolutional operations en- able the detection of frequency-domain patterns that are typically associated 

with specific modulation schemes or transmission protocols used by primary users. 

The dense layer then, lastly, produces the output identification of the classification whereby it 

identifies the ownership of the spectrum by a primary user (PU), or idle. 

The input image is initially viewed at different scales in order to capture fine and coarse information. 

All the scales are run through a CNN to produce feature maps. These are then input to an attention module 

that assigns importance weights so as to provide the most relevant feature thus providing score maps. The 

weighted feature maps of the various scales are stacked up together and transferred into a centrally placed 

deep CNN classifier. Finally, the model will generate the object type that was produced in output [50]. 

 

 
Figure 2. The overview of present ADCN model 
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T 

T 

t T 
k=1 exp(ek) 

t T 
k=1 exp(ek) 

Algorithm 1 Multi-Scale CNN With Attention-Based Feature Fusion 

Input: Input image I 

Output: Predicted class label y 

1 Step 1: Multi-scale image construction Generate scaled versions of I: S = {I (1), I (2), . . ., I(K)} 

2 Step 2: CNN feature extraction foreach scale k = 1 to K do 

3 foreach time step t = 1 to T do 

4 Compute feature map: h(k) = tanh (W c · x(k) + b c) 

t t 

5 Step 3: Attention weight computation foreach time step t = 1 to T do 

6 Compute attention score et 

7 Normalize attention weights: 

α = Σ 
exp(et) 

 

Step 4: Context vector generation Compute fused vector: 

c = 
Σ 

α t h t 

t=1 

 

Step 5: Classification Compute final output: 

y = soft max (Wy · c + by) 

return y 

 

Algorithm 2 CNN–LSTM–Attention Based Sequence Classification  
Input: Feature sequence X = {x1, x2, . . ., x T} 

Output: Predicted class label y 

8 Step 1: CNN feature encoding foreach time step t = 1 to T do 

9 h t = tanh (W c · x t + b c) 

10 Step 2: LSTM temporal modeling Initialize h0, C0 foreach time step t = 1 to T do 

11 ft = σ (W f · [ht−1, x t] + bf) it = σ (Wi · [ht−1, x t] + bi) C˜t = tanh (WC · [ht−1, x t] + b C) Ct 

= 

ft ∗ Ct−1 + it ∗ C˜t o t = σ (Wo · [ht−1, x t] + b o) h t = o t ∗ tanh (Ct) 

12 Step 3: Attention mechanism foreach time step t = 1 to T do 

13 Compute attention score et 

14 Normalize weights: 

α = Σ 
exp(et) 

 

Step 4: Context vector 

c = 
Σ 

α t h t 

t=1 

 

Step 5: Classification 

y = soft max (Wy · c + by) 

return y 

3.1. Attention-based feature fusion Multi-Scale CNN to Spectrum Sensing.  

The section is a formal description of the proposed multi-scale feature extraction policy, the 

attention based fusion policy, and the eigenvalue based detector baseline, which is specifically designed in 

the context of spectrum sensing. 1. Specific Spectrum-Sensing-Multi-Scale-Input-Definition. Unlike the 



Journal of Computing & Biomedical Informatics                                           Volume 10  Issue 02                                                                                         

ID : 1195-1002/2026  

image-based multi-scale CNNs, the suggested framework uses spectrum-domain representations 

computed on the received discrete-time baseband signal directly: 

r[n],n=1,2,…,N.                                                   (1) 

3.2. Frequency-Domain Feature Extraction 

Spectrum-sensing features are obtained using an FFT or STFT-based energy computation. Multiple 

spectral scales are generated by varying the FFT window length and sub-band resolution: 

X(s) = {E1(s),E2(s),…,EBs(s)},     s=1,2,…,S,                                         (2) 

where: 

• s: scale index 

• Bs: number of frequency sub-bands at scale sss 

• Eb(s): average energy of the bbb-th sub-band 

The sub-band energy is computed as: 

 

     𝐸𝑏(𝑠) =  
1

𝐿𝑠
∑ [𝑅(𝑠)(𝐾)𝑘=𝐵𝑏(𝑠) ]2                                               (3) 

with: 

• Ls: FFT length for scale sss 

• R(s)(k): FFT of r[n] using window size Ls 

• Bb(s): frequency bin set for sub-band bbb 

Each X(s) is processed by a scale-specific CNN branch, enabling the model to learn representations at 

different spectral resolutions. 

3.3. Attention-Based Feature Fusion and Definition of Attention Score 

Let the CNN-generated feature vector at scale sss and time index t be: 

      ft(s)∈RD.                                                              (4) 

The attention mechanism computes a relevance score for each scale: 

   Et(s) = vT tan h(Wf (s) + b)                                            (5) 

where: 

• W∈R: weight matrix 

• v∈R: attention vector 

• b∈R: bias term 

• tanh :activation function 

3.4. Eigenvalue-Based Detection Equation and Its Role 

Eigenvalue-based detection (EBD) serves as a classical benchmark for validating the proposed 

model. 

  𝑅 =  
1

𝑁
∑ [𝑅[𝑛]𝑅𝑅𝐻[𝑛]𝑁=1 ]                                             (6) 

Let: 

λmax =max (λ1,λ2,…,λM),         λmin=min (λ1,λ2,…,λM) 

where λi are eigenvalues of R. 

3.5. Detection Statistic 

TEBD=λmax/λmin                                                       (7) 

3.6. Decision Rule 

TEBD>γ, H1(Primary user present) 

TEBD≤γ,  H0(Channel idle) 

The traditional and other early methods of deep learning lack the dynamic prioritization of features 

and are therefore limited by their capacity to concentrate on the most pertinent data in a given spectrum. 

Research on the attention-based deep learning models, in particular that apply to real-time recognition of 

the PU in CRNs has received little attention [30, 31, and 42]. 

The above Figure 3 illustrates the flow of information in ADCN model. The input sequence is received 

in the first input, it is then convoluted by a temporal convolutional network to generate short-term features. 

An LSTM is used to extract time-related dependencies on these features. The sequence is sent through a 

dropout layer to limit overfitting before being sent to the attention mechanism. The self-attention block 
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computes the importance weight of every time step, and results in a weighted sequence. This 

representation is then sent to a classifier which produces the final prediction, and the attention weights can 

be examined to learn which areas of the sequence made the largest contribution to the decision [41, 43]. 

 

 
Figure 3. Flow of information in ADCN model 

 

4. Results and Discussion 

In our study mention the dataset and other parameter in table. the dataset or signal generation process, 

the channel model, modulation types, sensing window length, sampling rate, STFT parameters, 

preprocessing choices, labeling procedure, or train/validation/test protocol. Without these details, it is not 

possible to judge whether the reported performance reflects a realistic sensing scenario or an overly 

simplified setup. ROC curve graph & Define ROC, Prob. Of missed detection, false alarm, detection and 

attention score in Attention driven CNN [33]. This part conducts the performance analysis of the given 

Attention-based Deep Cognitive Network (ADCN) in comparison with the traditional spectrum sensing 

techniques in the SNR level between -20 dB and 10 dB. ORL Cognitive Radio Dataset (Open Radio Lab) is 

used in this work [34, 44]. We have provided a complete description of the manner in which the signals 

are produced in the study. This allows the experimental scenario to be completely repeatable and not 

simplified. The model-level details are also missing in the revised manuscript. We take the complete ADCN 

architecture, the number of CNN layers, the kernel sizes, the activation functions, the structure of the LSTM 

layers, and a mathematical accurate representation of the self-attention mechanism in query projection key 

projection values. The ADCN model has four convolutional layers. The initial layer uses a Conv2D filter 

with 32 filters and 3x 3 convoluting, a batch normalization, a ReLU activation, and max-pooling. In the 

second layer, a 3 over 3 Conv2D with 64 filters is applied again which is followed by a batch normalization, 

ReLU and max-pool. The third convolutional layer uses 128 filters, has a 5 by 5 kernel, batch normalization, 

ReLU activation, and max-pooling. The last fourth layer has the Conv2D of 256 filters and ReLU activation 

with a size of 3x3, and is usually followed by global average pooling, followed by feeding the 

LSTM/attention unit. The training scheme is written down, which contains optimizer (Adam), learning rate 

(0.0003), and batch size (32), the amount of epochs (60), dropout (0.3), the weight initialization, and early-

stopping parameters. The number of  the trainable parameters (3.1 million) is also indicated to show the 

capacity of the model. The revised version now has a complete ablation study to specifically respond to 

the concern that the attention mechanism makes in the reviewing of the paper. We compare the results of 

CNN-only, CNN+LSTM, and CNN+LSTM+Attention setups and it is obvious that the attention mechanism 

provides a 1422 percent improvement in the detection probability of a low SNR.  

Table 2: Simulation and Model Parameters Used for Cognitive Radio PU Detection 

Category Parameter Value 

Primary User Signal Waveform BPSK 
 Carrier Frequency 2.4 GHz 
 Sampling Frequency 10 MHz 
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 Modulation Types BPSK, QPSK, 16-QAM 

Channel Conditions AWGN 
Mean = 0, variance 

based on SNR 

 Rayleigh Fading 

Doppler = 30 Hz, 

single-tap flat fading, σ 

= 1/√2 

STFT Parameters FFT Size 256 
 Window Type Hann 
 Window Length 256 samples 
 Hop Size 128 samples 

Labeling Class Labels 
1 = PU present, 0 = PU 

absent 

Dataset Total Samples 50,000 (modifiable) 
 Train/Val/Test Split 70% / 15% / 15% 

Model Capacity Trainable Parameters 3.1 million 

ADCN Architecture 
Number of CNN 

Layers 
4 

 Filters per Layer 32, 64, 128, 256 
 Kernel Sizes 3×3, 3×3, 5×5, 3×3 

 Activations 
ReLU (CNN), Softmax 

(output) 

LSTM Structure LSTM Layers 1 
 Hidden Units 128 
 Return Sequences TRUE 

Self-Attention (Q–K–V) Attention Dimension 64 
 Number of Heads 4 
 Q, K, V Projection Sizes 128×64 each 
 Attention Type Scaled dot-product 

Training Scheme Optimizer Adam 
 Learning Rate 0.0003 
 Batch Size 32 
 Epochs 50 
 Loss Function Binary cross-entropy 

 Early Stopping 
Patience = 7, monitor = 

val_loss 

Table 3. Comparisons of bit error rate performance for various spectrum sensing methods as a function 

of SNR 

Method SNR -20 dB SNR -10 dB SNR 0 dB SNR 10 dB 

ED 0.6 0.4 0.25 0.1 

MFD 0.3 0.2 0.1 0.05 

CFD 0.2 0.15 0.1 0.03 

EBD 0.25 0.18 0.1 0.04 

Deep Learning 0.1 0.08 0.05 0.01 

BPSK-Based 

Detection 
0.22 0.14 0.08 0.02 

ADCN (Proposed) 0.12 0.06 0.03 0.01 

This is a direct indication of the usefulness of dynamic feature prioritization, in addition to a simple 

CNNLSTM baseline. The Receiver Operating Characteristic (ROC) curve is a statistical analysis tool that is 

applied to determine the performance of a binary classification system at various levels of decision 

thresholds. In an attention-driven CNN model, the network gives out a probability score which is 



Journal of Computing & Biomedical Informatics                                           Volume 10  Issue 02                                                                                         

ID : 1195-1002/2026  

established through convolutional feature extraction and attention-based weighting of informative 

regions. The classification threshold used on this score varies producing different combinations of the True 

Positive Rate (TPR), otherwise called the Probability of Detection (PD), and the False Positive rate (FPR), 

and also called the Probability of False Alarm (PFA). The ROC curve is the relationship of TPR (PD) versus 

FPR (PFA) and shows the sensitivity of the classifier to false alarms with varying threshold. The general 

ability of the model to discriminate is summarized by the Area under the Curve (AUC). The higher the 

value of AUC (1 is perfect separation of the classes, 0.5 is random guessing). As a result, ROC analysis will 

be very important in assessing the ability of attention based CNN models to discriminate target and non-

target patterns, especially in the uncertain or noisy condition [45]. 

 
Figure 4. ROC Curves 

The figure compares a Receiver Operating Characteristic (ROC) curve of the performance of various 

detection methods in terms of Detection Probability (P n ) versus False Alarm Rate (P F A ). All the colored 

curves are a representation of the various techniques and the accuracy and the robustness can be directly 

compared. The blue curve (ED- Energy Detection) is the least performing of all the methods. It starts close 

to a method of detection of about 0.4 at the 0.05 false alarm rate and grows slowly, which means that ED 

finds it hard to reliably detect weak or noisy signals. The orange curve (MFD - Matched Filter Detection) 

is more successful, since it becomes over 0.75 at low false alarm rates, and becomes steadily higher, which 

resembles its reliance on knowledge of previous signals. The green curve (CFD – Cyclostationary Feature 

Detection) has moderate performance, and it has a greater detection probability compared to ED and MFD, 

particularly at high levels of P F A.  

Out of confusion matrix, we obtain the values of True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN). By using these values, the performance parameters are calculated.  

Probability of Detection is defined as the likelihood that the classifier correctly detects a positive instance. 

PD = {TP}/{TP + FN}                                          (8) 

A higher PD  indicates that the attention mechanism successfully highlights discriminative regions 

or features necessary for target identification. 

Probability of Missed Detection (PMD) is given by 

PMD = {FN}/ {TP + FN}             (9) 

A high missed detection rate indicates that the attention modules are unable to capture critical spatial 

or temporal cues, causing the model to overlook relevant features. 
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Probability of False Alarm (PFA ) is given by  

PMD = {FP}/{TN + FP}              (10) 

High PFA suggests that attention is misdirected toward irrelevant or noisy regions, causing false 

activations. 

True Negative Rate (Specificity) is given as  

TNR = {TN}/{TN + FP}              (11) 

 
Figure 5. Comparison of Spectrum Sensing Methods 

This bar chart figure 5 compares the detection parameters of some sensing methods in four colored 

bars each technique. Most methods have the blue bars highest with the ED (Energy Detection) being the 

greatest and the scale of blue bars decreases as the techniques are more advanced. The same can be said of 

the orange bars, which depict moderate figures of traditional approaches and significantly smaller ones of 

deep learning-based methods. The green bars show smaller values of the parameters in general, which 

means better performance with increasing the complexity of the detection scheme between conventional 

and more sophisticated. The red bars are the least in all groups and they are virtually negligible in the 

BPSK-based detection and the proposed ADCN method. Comprehensively, the decreasing height of the 

all four colored bars left-to-right indicates that traditional methods have higher values of parameters of 

detection, whereas modern deep learning and the suggested ADCN methodology obtain significantly 

smaller values, which means a stronger accuracy and a reduced number of errors. 

The error detection (ED) technique exhibits the greatest error values as compared to all the other 

methodologies which means poor detection reliability. The wide range of variation in the error-related 

parameters indicates a poor capacity to discriminate leading to poor method of detecting the activities 

accurately. The missed false detection (MFD) technique shows a moderate development over ED. whereas 

the number of missed detections is lower, the rate of false alarm is still relatively high which restricts its 

overall performance. A further decrease in the errors of detection is seen in the example of correct false 

detection (CFD). This enhancement implies that it has a higher classification ability and better false positive 

cases management as compared to previous approaches. Error-based detection (EBD) has a more balanced 

performance on the parameters of detection. It has better robustness and better consistency than the 

conventional methods like ED, MFD and CFD, which implies a better reliability in detection. The deep 

learning methods exhibit a huge decrease in the error related parameters. The fact that this improvement 

shows the effectiveness of automatically learned features as compared to hand-crafted features leads to 

improved discrimination and detection accuracy. The performance is also enhanced by the background 
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subtraction (BGs)-based detection technique, which is better in reducing the occurrence of false alarms. 

This technique uses background-relevant motion cues in isolation and therefore, increases the detection 

accuracy over generic deep learning models. The ADCN method proposed has the lowest values in all 

parameters of error and false detection. This means that it has the best detection accuracy with few false 

alarms and missed detections. The findings have a clear picture of the effectiveness of the attention-based 

CNN in targeting discriminative regions resulting in strong and consistent human activity detection. 

 

5. Conclusion 

This paper presents a new paradigm of spectrum assessment management made of Cognitive Radio 

Networks (CRNs) and Attention-Driven Cognitive Network (ADCN). The proposed model is comprised 

of both recurrent and convolutional neural networks with a self-attention mechanism that automatically 

extracts and prioritizes spatial and temporal features of spectrum data. The architecture makes it possible 

to identify activities of primary users (PU) with a higher degree of precision and reliability even under 

constrained environments such as dynamic spectrum settings and challenging signal-to-noise ratios. 

After analyzing the existing work, it was found that traditional and early learning-based approaches 

to spectrum sensing have significant limitations including noise vulnerability, dependence on handcrafted 

features, and failure to concentrate on the most significant spectrum areas effectively. To address these 

challenges, the deep learning pipeline has been augmented with an attention mechanism that enables 

dynamic feature prioritization. 

The proposed ADCN model employs a self-attention mechanism combined with recurrent and 

convolutional neural networks, which automatically identify and weight spatial and temporal attributes 

of the spectrum data. This integrated approach demonstrates superior performance compared to 

conventional methods such as energy detection (ED), matched filter detection (MFD), Cyclo stationary 

feature detection (CFD), and eigenvalue-based detection (EBD) across various SNR conditions. 

Experimental results show that the deep learning-based approach consistently outperforms 

traditional spectrum sensing methods, achieving bit error rates as low as 0.01 at 10 dB SNR compared to 

0.1 for energy detection under the same conditions. The attention mechanism enables the model to focus 

on the most relevant spectral features, thereby improving detection accuracy and reducing false alarms in 

cognitive radio networks. 

Future work will focus on extending the model to handle multiple primary user scenarios, implement- 

ing real-time processing capabilities, and evaluating the system performance in more diverse and 

challenging wireless environments. Additionally, investigation into federated learning approaches for 

distributed spectrum sensing in CRNs presents promising research directions. 
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