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Abstract: A hybrid GAN architecture was designed to solve multi-modal medical image synthesis
and disease classification by combining key architectural principles from DC-GAN, Conditional
GAN, and SR-GAN, thereby enhancing training stability, providing label-conditioned image
synthesis, and improving perceptual image quality. The proposed framework was extensively
tested on large, diverse medical imaging datasets, including chest X-ray images to identify
pneumonia, retinal fundus images to evaluate diabetic retinopathy, brain MRI images to detect
tumors, microscopic images of leukemia white blood cells, and dermoscopic images to analyze skin
cancer. Quantitative experimentation revealed a steady convergent behavior, the values of the
generator loss and discriminator loss continued to decline throughout each of the datasets and the
lowest values were found in diabetic retinopathy cases (generator loss of 0.522 and discriminator
loss of 0.425) and leukemia cases (generator loss of 0.285 and discriminator loss of 0.224),
maintaining the presence of diagnostically significant pathological features. Computational
efficiency was also high, with about 0.75 hours of training time and a relatively small number of 0.67
million parameters, compared to SR-GAN-based models that require more than 10 hours of training
time and more than 2.3 million parameters. The success of the framework was also confirmed by
the quality of the generated images, attaining a high signal-to-noise ratio of 36.742, structural
similarity index of 0.93, and Fréchet inception distance of 30.402, which is better than several other
recent state-of-the-art methods, such as DRForecastGAN, GAN-VSP, IFGAN, and Pix2Pix GAN.
Also, incorporating a Squeeze-and-Excitation convolutional neural network classifier not only led
to a significant boost in disease classification performance but also improved the accuracy of diabetic
retinopathy and pneumonia to 0.90 and 0.98, respectively. In general, the suggested hybrid GAN
model has great potential as a low-cost, high-quality solution for medical image generation, data
augmentation, and automated disease detection in clinical decision-support systems.

Keywords: Generative Adversarial Network (GAN); Squeeze-and-Excitation Convolutional Neural
Network (SE-CNN); Medical Image Synthesis; Multi-Modal Medical Image Classification; Deep
Learning for Medical Imaging

1. Introduction

Modern healthcare radiology is an integral part of contemporary healthcare. It can optimize early
detection, establish diagnostic accuracy, and explore types of diseases such as Pneumonia, Diabetic
Retinopathy, Brain Tumors, Leukemia, and Skin Cancer, among others. Improved availability of radiology
services like X-ray, MRI, fundus photography, Dermoscopy, and white blood cell microscopy has
occasioned the creation of CA-CAD systems at different levels. Automated analysis of these images should
decrease workload on human health care and bring about a high level of precision in diagnoses, fostering
timely interventions in health regions with limited access to health care. In the last decade, deep learning
approaches, particularly convolutional neural networks (CNNs), have enjoyed great success in image

ID : 1182-1001/2025



Journal of Computing & Biomedical Informatics Volume 10 Issue 01

classification given their ability to learn hierarchical feature representation from raw images. Figure 1
shows the basic process of Generative Adversarial Network.
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Figure 1. Generative Adversarial Network Process

Although there have been many advancements in this field, the practical deployment of new systems
in real clinical settings is still limited. One of the main challenges is the lack of sufficiently large and well-
annotated medical image datasets. This scarcity is mainly due to patient privacy regulations, high costs
involved in expert labeling, and the limited availability of samples for rare diseases. In addition, class
imbalance in datasets often reduces model generalization and negatively affects diagnostic performance.
Variations in input data, such as differences in image resolution, contrast, and noise caused by different
imaging devices, further increase the complexity of the problem. These variations make it difficult for
convolutional neural networks to learn consistent and robust features, even when deep or stacked
architectures are used. As a result, hidden data inconsistencies can remain unaddressed, limiting the
reliability of simpler modeling approaches.

This research proposes a Hybrid GAN-based system to tackle the problem of limited patient data and
class imbalance. The invented model is based on the integration of DCGAN, Conditional GAN, and SR-
GAN to synthesize high-quality medical grayscale and RGB medical images across the different imaging
modalities. In this work, the term multi-modal refers to a unified architectural framework applied
consistently across heterogeneous medical imaging modalities, rather than a single jointly trained multi-
modal network with shared representations. The resultant hybrid model assures stable convergence,
quickened training, and guarantees preservation of the essential clinical characteristics of the synthesized
images while preserving and enhancing clinically imperative features.

A Squeeze-and-Excitation Convolutional Neural Network (SE-CNN) is thus proposed for classifying
images derived from multiple modes concisely. The Squeeze-and-Excitation CNN attempts to amplify
semantic information experienced on spatial relations between the channels by mending feature
representations, thus more expressiveness speeds in suppressing confounders of disease features. This
gradient integrates well the whole SE-CNN psychometric framework with GAN Committee stages in the
Hope-Balance Condition, generating mean classifications, concomitant to the performance of application
cases to generate full-trade health care benefits.

With reference to the context, activities will be arranged in such a way that this study will close the
research gaps in contemporary medical image analysis frameworks. Pre-eminently, this is to be achieved
by integrating the new main blocks of hybrid GAN-based image synthesis and SE-CNN classification. By
focus, the study proposes to be daring with a view to realizing a system abundantly endowed with
generative and classification power for arrest to diseases.

1.1. Related Work

The synthesis and analysis of medical images have considerable importance due to the ever-increasing
demand for automated and accurate diagnostic systems. Among the generative models, Generative
Adversarial Networks (GANSs) offer feature-rich standalone tools to synthesize high-quality images to
enhance scarce datasets and improve classification on downstream tasks. In their study, Akbar et al. [1]
gave a comparison of diffusion models and GANs while synthesizing brain MRI and chest X-ray images,
discussing the possibility of memorization on diffusion-based models, and establishing GANs' perspective
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in terms of fidelity and reliability for the medical image synthesis. Afnaan et al. [2] also presented a hybrid
deep learning framework for bidirectional medical image synthesis, which combined various generative
techniques to produce a more robust and diverse image output. Ali et al. [3] provided a recent review
regarding GAN technologies applied in medical image processing, with emphasis on architecture
optimization and training strategies to improve stability and realism.

Recent work has been focused on improving conditional generation and cycle-consistency. The
authors Chen et al. [4] developed Cycle-GAN for liver image generation, which enforces cycle consistency
and produces higher quality images with greater structural preservation. Devi and Kumar [5] utilized
DCGANS in diabetic retinopathy image synthesis with transfer learning for classification, suggesting that
realistic synthetic images can appreciably boost the performance of the diagnostic model. These models
were trained and assessed using large public datasets such as the Diabetic Retinopathy dataset [6], Skin
Cancer datasets [7], and interictal SPECT imaging datasets [8], giving benchmark data for validation of the
developed models.

Application of deep generative models spans to multi-modal medical image applications. Friedrich et
al. [9] provided a succinct overview of 3D image synthesis utilizing deep generative models, spotlighting
yet challenges in volume consistency and anatomical correctness. Hamghalam and Simpson [10] explored
the possibilities of conditional GANs for segmentation of brain tumors where label-guided synthesis can
enhance generation quality and segmentation accuracy. Heng et al. [11] proposed the HLSNC-GAN
framework, which involves the hinge loss and switchable normalization incorporated into CycleGAN for
stable and faithful imaging. Islam et al. [12] surveyed advances and the challenges in GANs in medical
imaging that stress limitations including unstable training, mode collapse, and computational heaviness.

Cross-modality translation also attracted considerable attention. Jha and lima [13] implemented CT-
to-MRI translation via CycleGAN for cross-modality image synthesis without paired dataset usage.
Kermany et al. [14] raised the prospect of making synthetic data integration by deep learning for automated
diagnosis through image-methods. Kumar et al. [15] synthesized medical images using DCGAN with an
encryption scheme for security; Madhav et al. [16] and Varshitha et al. [27] investigated image
enhancement through super-resolution using SRGAN. Systematic reviews such as those by Mamo et al.
[17] and Sindhura et al. [25] analyzed GAN-based approaches, applications in the clinic, and future
outlooks.

Various studies aimed to overcome dataset limitations through synthesizing modality-specific
images. Annotated datasets for Pneumonia X-rays and Brain MRI were made available by Mooney [18]
and Paul [20], respectively, for model evaluation. Nandal et al. [19] introduced ESRGAN-based super-
resolution for medical images to further improve feature representation for classification. Conditional
learning techniques for imputation and augmentation are demonstrated by Raad et al. [21] and Akhil et al.
[22], while Sherwani and Gopalakrishnan [23] reviewed deep learning methods for synthetic image
generation in radiotherapy. For breast cancer detection enhancement, mammogram synthesis using
DCGANSs was implemented by Shah et al. [24].

In more recent developments, emphasis has been placed on hybrid and multi-stage GAN
architectures. Tanwar [26] provided small datasets for leukemia classification, highlighting problems of
limited data availability. The paper [28] proposed self-improving generative foundation models for
synthetic medical image generation, ensuring high fidelity in different clinical scenarios. Wang et al. [29],
through CycleGAN, emphasized cycle-consistency and semantic preservation for unpaired MR-to-CT
synthesis. Finally, Medical- DCGAN proposed by Zakaria et al. [30] is a deep convolutional GAN code
constructed for medical imaging applications, yielding superior image quality and stability.

Overall, the literature reveals that while GAN-based techniques for medical image synthesis have
made strong progress, stability, computational efficiency, generalization across modalities, and retention
of important pathological features continue to pose challenges. Hybrid architectures using conditional
guidance, cycle-consistency, and attention mechanism proved to be useful avenues for addressing such
challenges, paving the way for high-fidelity multi-modal image generation along with improved
downstream classification. A cumulative line of evidence suggests that integrating synthetic image
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generation with high-performance classification networks is the key to advancing automated medical
diagnosis and realizing dependable Al-assisted clinical decision-making.

2. Materials and Methods

In Figure 2, the proposed Hybrid GAN is a sequential pipeline consisting of (i) DCGAN-based coarse
generation, (ii) conditional GAN refinement using class labels, and (iii) SRGAN-based super-resolution
enhancement. CycleGAN is not employed in the synthesis pipeline and is only referenced as a comparative
baseline from prior literature.
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Figure 2. Novel Hybrid GAN Block Diagram

2.1. Input Datasets

To perform the experimental analysis, five publicly available medical imaging datasets representing
five different disease categories and imaging modalities were used, ensuring a range of diagnostic
properties and visual complexity. The Diabetic Retinopathy data set is made up of high-resolution color
retinal fundus, which was categorized into five levels of severity, i.e., No Diabetic Retinopathy, Mild,
Moderate, Severe, and Proliferative stage, with an original size of the images of about 540 x 540 pixels; to
ensure consistency in the processing process, all the images were resized to 256 x 256 pixels and intensity-
normalized to a range of 0-1. The Pneumonia Chest X-ray data consists of 5,863 grayscale radiographic
images categorized into two groups: 4,273 pneumonia cases and 1,590 standard samples. The images were
rescaled to 256 x 256 and contrast-normalized to cover the lung regions and minimize illumination
differences across cases. To analyze brain tumors, a set of 2,053 T1-weighted magnetic resonance images,
categorized as usual or tumorous, was used, and preprocessing included skull stripping, down sampling
to 224 x 224 pixels, and intensity normalization to account for scanner-related variations. The Skin Cancer
dataset consists of 3,297 dermoscopic images: 2,236 with benign lesions and 1,061 with malignant lesions.
To maintain sample uniformity, the images were reduced to 256 x 256 pixels, and hair artefact images were
removed and color normalized. Also, the Leukemia Cell Image dataset consists of microscopic images
categorized as benign, early leukemia, and pre-leukemia images. To ensure that images of different stains
were comparable, all images were resized to 128 x 128 pixels and color normalized. To address minor class
imbalances observed during training, appropriate class-balancing measures were applied across all
datasets. Moreover, uniform preprocessing procedures were used for all datasets to enhance consistency,
reproducibility, and stable model optimization. Together, these datasets represent a rich array of imaging
modalities, including fundus photography, radiography, magnetic resonance imaging, Dermoscopy, and
microscopy, and pose diverse diagnostic challenges, thus offering a diverse assessment environment for
the strength and generalizability of medical image analysis models across heterogeneous clinical
conditions.

2.2. Initial Generation using DCGAN

A Deep Convolutional GAN (DCGAN) is developed to generate synthetic medical images while
preserving spatial features. The model includes a generator that converts random noise sampled from
N(0,1)into artificial images and a discriminator that differentiates real images from generated ones.
Through adversarial training, the generator gradually learns the underlying data distribution. The
DCGAN is optimized using an adversarial objective function.
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Lpogan = Ezpiilog D(@)] + E..p [log(1 — D(G(2)))]
The discriminator is trained to increase the loss value, whereas the generator attempts to reduce it.
Model training is performed using the Adam optimizer with a batch size of 16 over 1000 training epochs.

2.3. Conditional GAN for Semantic Control

Once the initial generation stage is complete, a conditional GAN (cGAN) is employed to incorporate
label-specific control into image synthesis. By enhancing the cGAN (z’ y)formulation, both the generator
and discriminator utilize class information to produce clinically relevant category-specific images. This
approach enables the generation of distinct disease-wise imaging data for improved visualization and
diagnosis. To handle specific scenarios, the adversarial loss function is further modified.

Logan = IEJ;E.‘,,,[IOgD(:D,y)] | Ez,’y[lﬂg(l D(G(z,y),4))]

The cGAN is refined using class-wise subsets of the training data. The discriminator processes paired
image-label inputs, while the generator incorporates label information through embedding layers.
Conditioning labels are modality specific: binary labels are used for Pneumonia, Skin Cancer, and
Leukemia datasets, whereas multi-class labels represent severity stages in Diabetic Retinopathy and Brain
Tumor datasets. Embedded class labels are combined with latent noise to generate diagnostically
consistent synthetic images across modalities.

2.4. Criteria Module for Image Quality

The quality of synthetic images is evaluated using structural and contrast-based attributes. A non-
trainable criteria module is applied after conditional generation and before super-resolution. Image quality
is measured using entropy, gradient magnitude, and Laplacian variance to assess texture, sharpness, and
edge clarity. Only top-ranked images are retained, limiting artifact propagation. The highest 20% of
samples are used to create low- and high-resolution pairs for SRGAN training, improving stability and
perceptual quality with minimal computational cost.

2.5. High-Resolution Output Generation

An SRGAN is employed to improve the visual clarity and sharpness of the selected synthetic images.
Its discriminator distinguishes real high-resolution images from generated ones, while the generator
reconstructs high-resolution outputs from low-resolution inputs to ensure realism. Training of the SRGAN
typically relies on a combined loss function to guide perceptual and reconstruction quality.

‘CSRGAN - 'C'ud"i: f /\1 f’cuuit:ni f )‘Q'Cpr:‘r(:t:pf'uul
Where:
. Cadv — E.,r DOED(G(JJLR))

. Et‘tmlf:ni = H:UIIR G('T:LH)H%

o Loperceptual = ||®(zar) &(G(zLgr))||3 using VGG-19 features

This approach aims to reduce generator loss while keeping discriminator loss stable through careful
tuning of the SRGAN generator. Producing visually realistic and diagnostically reliable images is essential
for both expert training and future clinical Al use. Low- and high-resolution image pairs are created by
down-sampling high-resolution images to supervise SRGAN learning. Applied after conditional
generation and quality screening, the SRGAN improves spatial detail while maintaining consistent
training and evaluation.

2.6. Generator Architecture

Table 1 presents a unified hybrid generator architecture applied across all datasets. The model
combines DCGAN, cGAN, and SRGAN within a single framework, while training weights separately for
each dataset without cross-dataset sharing. The Conv2D generator outputs 64x64x3 synthetic images
conditioned on input data. The discriminator processes stacked image—condition pairs (64x64x6) through
successive convolutional layers with LeakyReLU activation, followed by a fully connected layer that
outputs a single authenticity score.
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Table 1. Architecture of Generator

Block P i Kernel /
1\?:. r()sct(;i:elng Layer Type Srnr;fs Stride  Activation = Output Description
Latent vector
Random Noise combined with
Gl Input Stage - - - .
+ Feature Input medical feature
input
Feature Fully 1024 High-dimensional
G2 . Connected . - ReLU & .
Projection units feature mapping
Layer
a3 Reshape Tensor B B B Converts vector to
Layer Reshaping spatial feature map
G4 Upsampling Transposed 33 5 ReLU + Spatial resolution
Block-1 Convolution BatchNorm enhancement
C5 Upsampling Transposed 343 ’ ReLU + Further feature
Block-2 Convolution BatchNorm expansion
Gé I*ieature Convolution 33 1 ReL.U Texture ar‘ld edge
Refinement Layer learning
G7 Outp.ut Convolution 1x1 1 Tanh Pixel-level .1mage
Mapping Layer generation
Gs Generator Synthetic Image ~ B B Genere}ted medical
Output image

2.7. Discriminator Architecture
As shown in Table 2, the discriminator is able to differentiate real and synthetic images even without

batch normalization. Although MedSynGAN generates high-quality medical images across multiple
modalities, it remains susceptible to overfitting, particularly with small or imbalanced datasets. Hybrid
design improves generalization but does not fully prevent sample memorization. Scalability to large,
multi-institutional datasets and high-resolution or cross-device data remains unverified. Practical clinical
deployment may be constrained by training cost and complexity, highlighting the need for model

compression, continual learning, and domain adaptation strategies.

Table 2. Architecture of Discriminator

Block P i K 1
oc rocessing Layer Type errte / Stride Activation Functional Role
No. Stage Units
D1 Input Stage Image Input 3 3 3 Accepts r?al or
Layer generated image
D2 F eatl?re Convolution 33 5 LeakyReL.U Low-level .feature
Extraction-1 Layer detection
Feature Convolution LeakyReLU +  Mid-level pattern
D3 . 3x3 2 .
Extraction-2 Layer BatchNorm learning
High-level
Feature Convolution LeakyReLU + ' e\fe
D4 . 3x3 2 semantic
Extraction-3 Layer BatchNorm .
extraction
C ts feat
D5 Flattening Flatten Layer - - - onverts feattire
maps to vector
Fully
lassificati Real vs Fak
D6 Classification Connected 1 unit - Sigmoid caivs rake
Layer decision
Layer
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D7 Discriminator Probability Authenticity
Output Score estimation

2.8. Novel Classification Modelling

As illustrated in Figure 3, the proposed architecture incorporates Squeeze-and-Excitation (SE) blocks
within a convolutional neural network (CNN) to significantly enhance feature representation and overall
model effectiveness. The SE blocks are systematically embedded after selected convolutional layers,
allowing the network to adaptively recalibrate channel-wise feature responses. By selectively amplifying
informative channels and suppressing less relevant ones, the network becomes more capable of capturing
discriminative patterns that are critical for accurate medical image analysis. This channel attention
mechanism operates in a lightweight yet powerful manner, improving feature sensitivity without
introducing substantial computational burden. As medical images often contain subtle and localized visual
cues, such adaptive feature refinement plays a crucial role in improving classification robustness and
reliability. The inclusion of SE blocks enables the CNN to focus on the most diagnostically meaningful
information, thereby enhancing prediction accuracy while maintaining efficiency.

The SE module functions through three key stages. First, the squeeze operation performs global spatial
information aggregation using Global Average Pooling (GAP). This step compresses each feature map
across its spatial dimensions, producing a compact channel-wise descriptor. By summarizing global
contextual information, the network gains an overall understanding of feature relevance across channels.
Second, the excitation stage models inter-channel dependencies through a small fully connected bottleneck
structure. The compressed descriptor is passed through two dense layers. The first layer reduces
dimensionality using a predefined reduction ratio (commonly set to 16) and applies a ReLU activation to
introduce nonlinearity. The second layer restores the original channel dimension and uses a sigmoid
activation to generate normalized channel importance weights. Finally, the scaling stage applies these
learned weights to the original feature maps through element-wise multiplication. This step adaptively
emphasizes channels that contribute most to the learning task while diminishing the influence of less
informative features. As a result, the network dynamically learns “what” to focus on, improving its ability
to extract meaningful representations from complex medical images. Overall, the integration of SE blocks
enhances model interpretability, stability, and classification performance, making the proposed approach
particularly suitable for medical imaging tasks where accuracy and efficiency are both critical.
Advantages:

1.Improved Feature Learning: SE blocks enhance representation by modeling channel-wise relationships,
giving higher importance to informative channels and enabling clearer feature discrimination.

2.Computational Efficiency: SE blocks introduce only a small number of extra parameters, governed by
the channel size and reduction ratio, ensuring an effective balance between performance and
complexity.

3.Stronger Generalization: Adaptive channel attention allows the network to better handle data

variability, improving robustness and performance on unseen samples.

4.Easy Integration: The modular design of SE blocks enables seamless incorporation into existing CNN
architectures. In this approach, they are placed after convolutional blocks to refine intermediate feature
maps.

5.Performance Enhancement: SE blocks consistently improve evaluation metrics such as accuracy and F1-
score, especially for datasets with complex or noisy patterns.

6.Overfitting Reduction: By recalibrating feature importance, SE blocks limit the influence of irrelevant
patterns, helping to reduce overfitting during training.
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Figure 3. Architecture of SE-CNN Classification Model

3. Results

The experimental framework was structured to support reliable training and evaluation of several
GAN variants, including DCGAN, cGAN, CycleGAN, SRGAN, and the proposed Hybrid GAN. All
experiments were conducted on Google Colab using NVIDIA T4 GPUs, enabling efficient acceleration of
deep learning workloads without requiring specialized local hardware. This setup ensured a practical and
cost-effective environment for large-scale experimentation. The models were evaluated on multiple
medical imaging domains, including diabetic retinopathy, pneumonia, brain tumors, skin cancer, and
leukemia, to comprehensively examine their capability to synthesize realistic and clinically relevant
images.

As summarized in Table 3, all networks were trained for 1000 epochs with a batch size of 16 to ensure
sufficient exposure to the data and effective feature learning. A fixed learning rate of 0.0001 and a
momentum coefficient () of 0.5 were used to promote stable convergence. The Adam optimizer was
selected due to its adaptive learning behavior and proven effectiveness in GAN training. Model
performance was assessed using generator and discriminator loss values, which reflect adversarial stability
and image quality. Maintaining identical training settings across all models enabled fair comparison,
demonstrating the hybrid model’s advantages in training efficiency, computational balance, and image
synthesis quality for practical clinical applications.
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Table 3. Hyper Parameters of Hybrid GAN

Training Setting Configured Value Role in the Model
Controls how many samples are
Mini-batch size 16 . er)cessed simultaneousl}f,
influencing convergence behavior and
training stability.
Total training iterations 1000 Defines how many times the model

(epochs)

Objective function

Generator optimization
method

Discriminator
optimization method

Step size (learning rate)

Momentum coefficient

(B)

Binary cross-entropy
with logits

Adam optimizer

Adam optimizer

1 %10

0.5

learns from the entire dataset.
Evaluates the discriminator’s ability
to correctly classify authentic and
generated images.
Updates generator parameters to
improve the realism of synthesized
images.

Adjusts discriminator weights to
enhance real-fake image
discrimination.
Regulates the magnitude of weight
updates during backpropagation.
Balances past gradient influence to
ensure smoother and more stable
training.

As shown in Table 4, the SE-CNN training parameters were chosen to ensure stable and efficient
learning, using a batch size of 64, 50 training epochs, Binary Crossentropy loss, and the Adam optimizer.
A learning rate of 0.001 was applied to balance convergence speed and optimization stability while
enabling effective feature learning.

Table 4. Hyper Parameters of Novel SE-CNN

Training Setting Configured Value Role in the Model
Influences gradient consistency
Mini-batch size 64 and overall learning stability
during training.
Specifies how many times the
Number of epochs 50 model iterates over the complete

Loss criterion

Optimization
algorithm

Learning step size

Binary cross-entropy
with logits

Adam optimizer

1x103

training set.

Quantifies the prediction error
between actual and estimated class
labels in a binary classification
setting.

Utilizes adaptive learning rates
and momentum to accelerate and
stabilize convergence.
Controls the scale of parameter
updates during backpropagation.

3.1. Generation Images

Figure 4 illustrates the capability of the proposed Hybrid GAN to synthesize realistic fundus images
from the Diabetic Retinopathy dataset. The generated samples closely resemble real retinal images by
accurately preserving essential anatomical components such as the optic disc, macula, and vascular
structures. The outputs demonstrate natural color consistency, uniform lighting, and detailed textures,
retaining subtle vascular cues that are vital for diabetic retinopathy assessment.
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Figure 4. Image Generation for DR

Figures 5 showcases additional synthetic fundus images generated by the proposed Hybrid GAN for
the Diabetic Retinopathy dataset. The generated outputs maintain high visual fidelity, accurately
reproducing retinal landmarks such as the optic disc, macular region, and vascular network. Consistent
illumination, natural color tones, and preserved fine-grain textures demonstrate the model’s ability to
generate clinically reliable retinal images.
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Figure 5. Image Generation for Pneumonia x-ray

Figure 6 further validates the robustness of the Hybrid GAN by presenting another set of synthesized
retinal images. The model effectively captures subtle vascular structures and anatomical continuity,
ensuring realistic appearance. The clarity and structural coherence of these images highlight the suitability
of the generated samples for diagnostic evaluation and training purposes.
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Figure 6. Image Generation for brain tumor MRI

Figure 7 Hybrid GAN continues to demonstrate stable performance, producing fundus images with
well-defined anatomical features and uniform lighting conditions. The preservation of delicate vessel
patterns and texture details reflects the model’s strength in modeling complex retinal characteristics
associated with diabetic retinopathy.
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Figure 7. Image Generation for Skin cancer

Figure 8 illustrates consistent synthetic image quality across multiple generations. The Hybrid GAN
successfully maintains color balance, spatial detail, and anatomical accuracy, reinforcing its reliability for
large-scale retinal image synthesis and data augmentation in medical imaging workflows.
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Figure 8. Image Generation for Leukemia cancer
3.2. Classification Using SE-CNN
Figure 9 compares confusion matrices obtained without and with Hybrid GAN augmentation.
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Figure 9. Classification of Diabetic Retinopathy (a) Without GAN (b) With Hybrid GAN
Figure 10 highlights a similar trend, where the baseline model struggles with class misclassification
and achieves low accuracy (0.35). When trained with Hybrid GAN-augmented data, the classifier
demonstrates balanced performance across classes, achieving a significantly higher accuracy of 0.98.
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Figure 10. Classification of Pneumonia (a) Without GAN (b) With Hybrid GAN
Figure 11 the use of Hybrid GAN improves classification consistency and reliability. While the
baseline model exhibits uneven predictions, the Hybrid GAN-enhanced model achieves improved class
separation and a higher overall accuracy of 0.97.
Confusion Matrix Confusion Matrix

2 2
o ]
(7}
3
=
0 1 2 3 0 1 2 3
Predicted label Predicted label
precision recall fil-score support precision recall fil-score support
e 8.04 0.91 8.92 264 8 0.08 0.08 0.98 332
1 e.88 @.83 8.85 266 1 8.02 0.97 8.94 326
2 0.95 0.97 @.96 313 2 0.98 0.93 0.95 310
3 0.92 0.98 0.95 300 3 1.00 1.00 1.00 s08
accuracy 8.92 1143
accuracy 8.97 1276
_macro avg 8.92 0.92 8.92 1143 sacrs. ave 0.97 8.07 0.97 1276
weighted avg ©.92 2.92 0.92 1143 weighted avg 8.07 0.97 .97 1276
(a) Without Hybrid GAN (b) With Hybrid GAN

Figure 11. Classification of Brain Tumor (a) Without GAN (b) With Hybrid GAN
Figure 12 presents confusion matrix results for skin cancer classification. Without Hybrid GAN
augmentation, the model performance is limited (accuracy 0.77). With Hybrid GAN support, classification
accuracy increases to 0.98, along with notable gains in precision, recall, and Fl-score, confirming its
effectiveness in complex cancer classification tasks.
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Figure 12. Classification of Skin (a) Without GAN (b) With Hybrid GAN
Figure 13 demonstrates improved classification outcomes with Hybrid GAN integration. The baseline
model shows weak performance with an accuracy of 0.52, whereas the Hybrid GAN-augmented model

achieves balanced predictions across all classes and a substantially higher accuracy of 0.90, emphasizing
the framework’s robustness across datasets.
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Figure 13. Classification of Leukemia (a) Without Hybrid GAN (b) With Hybrid GAN

4. Discussion

Table 5 summarizes generator and discriminator loss values across five medical imaging datasets and
different GAN architectures. These losses are reported to reflect training stability rather than direct image
quality. The Hybrid GAN demonstrates the most stable convergence behavior, achieving lower loss values,
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particularly for Diabetic Retinopathy and Leukemia datasets, indicating reliable and efficient adversarial

training.
Table 5. GANs Losses Analysis
Medical DCGAN C-GAN CycleGAN SRGAN Proposed
Modality (G/D) (G/D) (G/D) (G/D) MixGANMed (G/D)
Diabetic 481/446 461/442  2.40/2.02 4.63/4.09 0.52/0.43
Retinopathy
X-ray Pneumonia 0.59/0.29 0.52/0.22 0.69/0.38 0.70/0.40 1.21/1.21
Brain Tumor MRI ~ 0.78 /047  0.76/045  1.20/0.65 1.42/0.82 1.54/1.75
Skin Cancer 624/625 622/621  421/412 6.25/6.12 1.01/1.22
Blood Cell
Leukemia Cell  556/536 523/523  3.33/3.13 5.23/5.10 0.29/0.22

*G: Generator Loss, D: Discriminator Loss
Table 6 reports image quality evaluation metrics. PSNR and SSIM are used exclusively for assessing
the super-resolution stage, where paired low- and high-resolution images are available. For overall realism
and distribution-level similarity of generated images, Fréchet Inception Distance (FID) is adopted as the
primary evaluation metric, as it measures the closeness between real and synthetic image distributions.
Table 6. GANs Image Quality Analysis

Avg Avg Avg PSNR Avg
Dataset Model FID IS (dB) SSIM
DR, X-ray, Brain MRI, Ski
s Acray, brat VA, skin DCGAN 44596 136 14.57 0.50
Cancer and Leukemia
DR, X-ray, Brain MRI, Ski
(Xray, Brain MRI Skin - a0 41308 111 13.77 0.50
Cancer and Leukemia
DR, X-ray, Brain MRI, Skin SRGAN 41718  1.90 13.00 0.48
Cancer and Leukemia
DR, X-ray, Brain MRI, Skin Proposed
o oy CAN 30402  4.642 36.742 0.93

Table 7 compares computational complexity in terms of training time and parameter count. The
Hybrid GAN exhibits a lightweight and efficient design, requiring minimal training time and fewer
parameters compared to other GAN variants, particularly SRGAN, which demands significantly higher
computational resources.

Table 7. GANs Complexity Analysis

Dataset Model Avg Training Time Trainable
(hrs) Parameters
R, X- i RI i
DR, X-ray, Brain MRI, Skin DCGAN 5.0 12M
Cancer and Leukemia
DR, X-ray, Brain MRI, Skin
Cancer and Leukemia CycleGAN 7.0 1.8M
DR, X-ray, Brain MRI, .Skm SRGAN 8.0 2 1M
Cancer and Leukemia
DR, X-ray, Brain MRI, Skin Proposed
Cancer and Leukemia GAN 0.9 0.67M

Table 8 provides a comparison between the proposed Hybrid GAN and existing state-of-the-art
methods across multiple medical imaging modalities. While prior approaches achieve reasonable
performance, the proposed model consistently delivers superior image quality metrics while maintaining
low training cost, demonstrating both effectiveness and efficiency.
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Table 8. Comparative Analysis of Existing Systems

I
Method mag.e Dataset Epochs PSNR SSIM FID IS Time
Domain
DRFore’[‘ﬁStGAN Color DR 200 169 065 344 - -
GAN-VSP [2] Color DR 10k 3510  0.90 - 012 -
IFGAN [3] Gray MRI 100 3111 093 - - 159h
Pix2Pix GAN [5] Gray MRI, PET 1000 27.11 0.89 - - -
Proposed Multi-
lor + 1 74 . 40 4.64 0.75h
Hybrid GAN Color + Gray dataset 000 36 093 3040 4.64 0.75

Table 9 presents classification performance with and without Hybrid GAN augmentation. Across all
five datasets, the Hybrid GAN markedly enhances classification accuracy and robustness, achieving near-
optimal results in several cases. These findings confirm the Hybrid GAN'’s strong contribution to
improving both synthetic image generation and downstream medical image classification tasks.

Table 9. Performance Comparison with and Without Hybrid GAN

Dataset Without Hybrid GAN With Hybrid GAN
s¢ ACC P R F1 ACC P R F1
Brain 0.91 091 092 0.91 0.97 097 097 0.97

Tumor

Diabetic 0.37 007 019  0.10 0.89 091 090 0.0
Retinopathy
Skin Cancer 0.76 078 078 0.76 0.98 098 098 0.98
Pneumonia 0.36 017 049 0.25 0.98 098 098 0.98
Skin Cancer 0.76 078  0.78 0.76 0.98 098 098 0.98

5. Conclusions

A novel hybrid generative adversarial framework is introduced to produce high-quality medical
images across multiple diagnostic domains. The proposed approach integrates the strengths of well-
established GAN variants, including DCGAN, cGAN, and SRGAN, effectively addressing key limitations
of traditional methods such as training instability, slow convergence, and inadequate structural detail
preservation. The model is extensively validated on five benchmark medical datasets —Diabetic
Retinopathy, Pneumonia, Brain Tumors, Skin Cancer, and Leukemia—where it consistently surpasses
conventional GAN models in terms of training stability, generator and discriminator loss behavior, and
overall image realism. Both qualitative and quantitative evaluations confirm that the synthesized images
closely preserve critical anatomical characteristics while minimizing visual artifacts, ensuring strong
clinical relevance for diagnostic applications. In addition, the framework demonstrates notable
computational efficiency, requiring only 0.75 hours of training with 0.67 million parameters, achieving a
favorable balance between resource usage and synthesis quality. Classification performance is further
enhanced by integrating a Squeeze-and-Excitation-based CNN, which leads to substantial improvements
in accuracy, precision, recall, and F1-score across all evaluated datasets, supporting reliable automated
medical diagnosis.

Future work may extend this framework to additional imaging modalities such as CT and PET, as
well as rare disease datasets. Incorporating explainable Al techniques could further improve model
transparency and trustworthiness, while federated learning strategies would enable secure multi-
institutional training. These advancements are expected to broaden real-world clinical applicability and
strengthen the framework’s impact on medical image synthesis and diagnostic automation.
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