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Abstract: A hybrid GAN architecture was designed to solve multi-modal medical image synthesis 

and disease classification by combining key architectural principles from DC-GAN, Conditional 

GAN, and SR-GAN, thereby enhancing training stability, providing label-conditioned image 

synthesis, and improving perceptual image quality. The proposed framework was extensively 

tested on large, diverse medical imaging datasets, including chest X-ray images to identify 

pneumonia, retinal fundus images to evaluate diabetic retinopathy, brain MRI images to detect 

tumors, microscopic images of leukemia white blood cells, and dermoscopic images to analyze skin 

cancer. Quantitative experimentation revealed a steady convergent behavior, the values of the 

generator loss and discriminator loss continued to decline throughout each of the datasets and the 

lowest values were found in diabetic retinopathy cases (generator loss of 0.522 and discriminator 

loss of 0.425) and leukemia cases (generator loss of 0.285 and discriminator loss of 0.224), 

maintaining the presence of diagnostically significant pathological features. Computational 

efficiency was also high, with about 0.75 hours of training time and a relatively small number of 0.67 

million parameters, compared to SR-GAN-based models that require more than 10 hours of training 

time and more than 2.3 million parameters. The success of the framework was also confirmed by 

the quality of the generated images, attaining a high signal-to-noise ratio of 36.742, structural 

similarity index of 0.93, and Fréchet inception distance of 30.402, which is better than several other 

recent state-of-the-art methods, such as DRForecastGAN, GAN-VSP, IFGAN, and Pix2Pix GAN. 

Also, incorporating a Squeeze-and-Excitation convolutional neural network classifier not only led 

to a significant boost in disease classification performance but also improved the accuracy of diabetic 

retinopathy and pneumonia to 0.90 and 0.98, respectively. In general, the suggested hybrid GAN 

model has great potential as a low-cost, high-quality solution for medical image generation, data 

augmentation, and automated disease detection in clinical decision-support systems. 

 

Keywords: Generative Adversarial Network (GAN); Squeeze-and-Excitation Convolutional Neural 
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1. Introduction 

Modern healthcare radiology is an integral part of contemporary healthcare. It can optimize early 

detection, establish diagnostic accuracy, and explore types of diseases such as Pneumonia, Diabetic 

Retinopathy, Brain Tumors, Leukemia, and Skin Cancer, among others. Improved availability of radiology 

services like X-ray, MRI, fundus photography, Dermoscopy, and white blood cell microscopy has 

occasioned the creation of CA-CAD systems at different levels. Automated analysis of these images should 

decrease workload on human health care and bring about a high level of precision in diagnoses, fostering 

timely interventions in health regions with limited access to health care. In the last decade, deep learning 

approaches, particularly convolutional neural networks (CNNs), have enjoyed great success in image 
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classification given their ability to learn hierarchical feature representation from raw images. Figure 1 

shows the basic process of Generative Adversarial Network. 

 

Figure 1. Generative Adversarial Network Process 

Although there have been many advancements in this field, the practical deployment of new systems 

in real clinical settings is still limited. One of the main challenges is the lack of sufficiently large and well-

annotated medical image datasets. This scarcity is mainly due to patient privacy regulations, high costs 

involved in expert labeling, and the limited availability of samples for rare diseases. In addition, class 

imbalance in datasets often reduces model generalization and negatively affects diagnostic performance. 

Variations in input data, such as differences in image resolution, contrast, and noise caused by different 

imaging devices, further increase the complexity of the problem. These variations make it difficult for 

convolutional neural networks to learn consistent and robust features, even when deep or stacked 

architectures are used. As a result, hidden data inconsistencies can remain unaddressed, limiting the 

reliability of simpler modeling approaches. 

This research proposes a Hybrid GAN-based system to tackle the problem of limited patient data and 

class imbalance. The invented model is based on the integration of DCGAN, Conditional GAN, and SR-

GAN to synthesize high-quality medical grayscale and RGB medical images across the different imaging 

modalities. In this work, the term multi-modal refers to a unified architectural framework applied 

consistently across heterogeneous medical imaging modalities, rather than a single jointly trained multi-

modal network with shared representations. The resultant hybrid model assures stable convergence, 

quickened training, and guarantees preservation of the essential clinical characteristics of the synthesized 

images while preserving and enhancing clinically imperative features. 

A Squeeze-and-Excitation Convolutional Neural Network (SE-CNN) is thus proposed for classifying 

images derived from multiple modes concisely. The Squeeze-and-Excitation CNN attempts to amplify 

semantic information experienced on spatial relations between the channels by mending feature 

representations, thus more expressiveness speeds in suppressing confounders of disease features. This 

gradient integrates well the whole SE-CNN psychometric framework with GAN Committee stages in the 

Hope-Balance Condition, generating mean classifications, concomitant to the performance of application 

cases to generate full-trade health care benefits. 

With reference to the context, activities will be arranged in such a way that this study will close the 

research gaps in contemporary medical image analysis frameworks. Pre-eminently, this is to be achieved 

by integrating the new main blocks of hybrid GAN-based image synthesis and SE-CNN classification. By 

focus, the study proposes to be daring with a view to realizing a system abundantly endowed with 

generative and classification power for arrest to diseases. 

1.1. Related Work 

The synthesis and analysis of medical images have considerable importance due to the ever-increasing 

demand for automated and accurate diagnostic systems. Among the generative models, Generative 

Adversarial Networks (GANs) offer feature-rich standalone tools to synthesize high-quality images to 

enhance scarce datasets and improve classification on downstream tasks. In their study, Akbar et al. [1] 

gave a comparison of diffusion models and GANs while synthesizing brain MRI and chest X-ray images, 

discussing the possibility of memorization on diffusion-based models, and establishing GANs' perspective 
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in terms of fidelity and reliability for the medical image synthesis. Afnaan et al. [2] also presented a hybrid 

deep learning framework for bidirectional medical image synthesis, which combined various generative 

techniques to produce a more robust and diverse image output. Ali et al. [3] provided a recent review 

regarding GAN technologies applied in medical image processing, with emphasis on architecture 

optimization and training strategies to improve stability and realism. 

Recent work has been focused on improving conditional generation and cycle-consistency. The 

authors Chen et al. [4] developed Cycle-GAN for liver image generation, which enforces cycle consistency 

and produces higher quality images with greater structural preservation. Devi and Kumar [5] utilized 

DCGANs in diabetic retinopathy image synthesis with transfer learning for classification, suggesting that 

realistic synthetic images can appreciably boost the performance of the diagnostic model. These models 

were trained and assessed using large public datasets such as the Diabetic Retinopathy dataset [6], Skin 

Cancer datasets [7], and interictal SPECT imaging datasets [8], giving benchmark data for validation of the 

developed models. 

Application of deep generative models spans to multi-modal medical image applications. Friedrich et 

al. [9] provided a succinct overview of 3D image synthesis utilizing deep generative models, spotlighting 

yet challenges in volume consistency and anatomical correctness. Hamghalam and Simpson [10] explored 

the possibilities of conditional GANs for segmentation of brain tumors where label-guided synthesis can 

enhance generation quality and segmentation accuracy. Heng et al. [11] proposed the HLSNC-GAN 

framework, which involves the hinge loss and switchable normalization incorporated into CycleGAN for 

stable and faithful imaging. Islam et al. [12] surveyed advances and the challenges in GANs in medical 

imaging that stress limitations including unstable training, mode collapse, and computational heaviness. 

Cross-modality translation also attracted considerable attention. Jha and Iima [13] implemented CT-

to-MRI translation via CycleGAN for cross-modality image synthesis without paired dataset usage. 

Kermany et al. [14] raised the prospect of making synthetic data integration by deep learning for automated 

diagnosis through image-methods. Kumar et al. [15] synthesized medical images using DCGAN with an 

encryption scheme for security; Madhav et al. [16] and Varshitha et al. [27] investigated image 

enhancement through super-resolution using SRGAN. Systematic reviews such as those by Mamo et al. 

[17] and Sindhura et al. [25] analyzed GAN-based approaches, applications in the clinic, and future 

outlooks. 

Various studies aimed to overcome dataset limitations through synthesizing modality-specific 

images. Annotated datasets for Pneumonia X-rays and Brain MRI were made available by Mooney [18] 

and Paul [20], respectively, for model evaluation. Nandal et al. [19] introduced ESRGAN-based super-

resolution for medical images to further improve feature representation for classification. Conditional 

learning techniques for imputation and augmentation are demonstrated by Raad et al. [21] and Akhil et al. 

[22], while Sherwani and Gopalakrishnan [23] reviewed deep learning methods for synthetic image 

generation in radiotherapy. For breast cancer detection enhancement, mammogram synthesis using 

DCGANs was implemented by Shah et al. [24].  

In more recent developments, emphasis has been placed on hybrid and multi-stage GAN 

architectures. Tanwar [26] provided small datasets for leukemia classification, highlighting problems of 

limited data availability. The paper [28] proposed self-improving generative foundation models for 

synthetic medical image generation, ensuring high fidelity in different clinical scenarios. Wang et al. [29], 

through CycleGAN, emphasized cycle-consistency and semantic preservation for unpaired MR-to-CT 

synthesis. Finally, Medical-DCGAN proposed by Zakaria et al. [30] is a deep convolutional GAN code 

constructed for medical imaging applications, yielding superior image quality and stability.  

Overall, the literature reveals that while GAN-based techniques for medical image synthesis have 

made strong progress, stability, computational efficiency, generalization across modalities, and retention 

of important pathological features continue to pose challenges. Hybrid architectures using conditional 

guidance, cycle-consistency, and attention mechanism proved to be useful avenues for addressing such 

challenges, paving the way for high-fidelity multi-modal image generation along with improved 

downstream classification. A cumulative line of evidence suggests that integrating synthetic image 
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generation with high-performance classification networks is the key to advancing automated medical 

diagnosis and realizing dependable AI-assisted clinical decision-making. 
 

2. Materials and Methods  

In Figure 2, the proposed Hybrid GAN is a sequential pipeline consisting of (i) DCGAN-based coarse 

generation, (ii) conditional GAN refinement using class labels, and (iii) SRGAN-based super-resolution 

enhancement. CycleGAN is not employed in the synthesis pipeline and is only referenced as a comparative 

baseline from prior literature. 

 

Figure 2. Novel Hybrid GAN Block Diagram 

2.1. Input Datasets 

To perform the experimental analysis, five publicly available medical imaging datasets representing 

five different disease categories and imaging modalities were used, ensuring a range of diagnostic 

properties and visual complexity. The Diabetic Retinopathy data set is made up of high-resolution color 

retinal fundus, which was categorized into five levels of severity, i.e., No Diabetic Retinopathy, Mild, 

Moderate, Severe, and Proliferative stage, with an original size of the images of about 540 x 540 pixels; to 

ensure consistency in the processing process, all the images were resized to 256 x 256 pixels and intensity-

normalized to a range of 0-1. The Pneumonia Chest X-ray data consists of 5,863 grayscale radiographic 

images categorized into two groups: 4,273 pneumonia cases and 1,590 standard samples. The images were 

rescaled to 256 x 256 and contrast-normalized to cover the lung regions and minimize illumination 

differences across cases. To analyze brain tumors, a set of 2,053 T1-weighted magnetic resonance images, 

categorized as usual or tumorous, was used, and preprocessing included skull stripping, down sampling 

to 224 x 224 pixels, and intensity normalization to account for scanner-related variations. The Skin Cancer 

dataset consists of 3,297 dermoscopic images: 2,236 with benign lesions and 1,061 with malignant lesions. 

To maintain sample uniformity, the images were reduced to 256 x 256 pixels, and hair artefact images were 

removed and color normalized. Also, the Leukemia Cell Image dataset consists of microscopic images 

categorized as benign, early leukemia, and pre-leukemia images. To ensure that images of different stains 

were comparable, all images were resized to 128 x 128 pixels and color normalized. To address minor class 

imbalances observed during training, appropriate class-balancing measures were applied across all 

datasets. Moreover, uniform preprocessing procedures were used for all datasets to enhance consistency, 

reproducibility, and stable model optimization. Together, these datasets represent a rich array of imaging 

modalities, including fundus photography, radiography, magnetic resonance imaging, Dermoscopy, and 

microscopy, and pose diverse diagnostic challenges, thus offering a diverse assessment environment for 

the strength and generalizability of medical image analysis models across heterogeneous clinical 

conditions. 

2.2. Initial Generation using DCGAN 

A Deep Convolutional GAN (DCGAN) is developed to generate synthetic medical images while 

preserving spatial features. The model includes a generator that converts random noise sampled from 

𝑁(0,1) into artificial images and a discriminator that differentiates real images from generated ones. 

Through adversarial training, the generator gradually learns the underlying data distribution. The 

DCGAN is optimized using an adversarial objective function.  
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The discriminator is trained to increase the loss value, whereas the generator attempts to reduce it. 

Model training is performed using the Adam optimizer with a batch size of 16 over 1000 training epochs. 

2.3. Conditional GAN for Semantic Control 

Once the initial generation stage is complete, a conditional GAN (cGAN) is employed to incorporate 

label-specific control into image synthesis. By enhancing the cGAN (𝑧, 𝑦)formulation, both the generator 

and discriminator utilize class information to produce clinically relevant category-specific images. This 

approach enables the generation of distinct disease-wise imaging data for improved visualization and 

diagnosis. To handle specific scenarios, the adversarial loss function is further modified. 

 
The cGAN is refined using class-wise subsets of the training data. The discriminator processes paired 

image–label inputs, while the generator incorporates label information through embedding layers. 

Conditioning labels are modality specific: binary labels are used for Pneumonia, Skin Cancer, and 

Leukemia datasets, whereas multi-class labels represent severity stages in Diabetic Retinopathy and Brain 

Tumor datasets. Embedded class labels are combined with latent noise to generate diagnostically 

consistent synthetic images across modalities. 

2.4. Criteria Module for Image Quality 

The quality of synthetic images is evaluated using structural and contrast-based attributes. A non-

trainable criteria module is applied after conditional generation and before super-resolution. Image quality 

is measured using entropy, gradient magnitude, and Laplacian variance to assess texture, sharpness, and 

edge clarity. Only top-ranked images are retained, limiting artifact propagation. The highest 20% of 

samples are used to create low- and high-resolution pairs for SRGAN training, improving stability and 

perceptual quality with minimal computational cost. 

2.5. High-Resolution Output Generation 

An SRGAN is employed to improve the visual clarity and sharpness of the selected synthetic images. 

Its discriminator distinguishes real high-resolution images from generated ones, while the generator 

reconstructs high-resolution outputs from low-resolution inputs to ensure realism. Training of the SRGAN 

typically relies on a combined loss function to guide perceptual and reconstruction quality. 

 
Where: 

 
 

This approach aims to reduce generator loss while keeping discriminator loss stable through careful 

tuning of the SRGAN generator. Producing visually realistic and diagnostically reliable images is essential 

for both expert training and future clinical AI use. Low- and high-resolution image pairs are created by 

down-sampling high-resolution images to supervise SRGAN learning. Applied after conditional 

generation and quality screening, the SRGAN improves spatial detail while maintaining consistent 

training and evaluation. 

2.6. Generator Architecture 

Table 1 presents a unified hybrid generator architecture applied across all datasets. The model 

combines DCGAN, cGAN, and SRGAN within a single framework, while training weights separately for 

each dataset without cross-dataset sharing. The Conv2D generator outputs 64×64×3 synthetic images 

conditioned on input data. The discriminator processes stacked image–condition pairs (64×64×6) through 

successive convolutional layers with LeakyReLU activation, followed by a fully connected layer that 

outputs a single authenticity score. 
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Table 1. Architecture of Generator  

Block 

No. 

Processing 

Stage 
Layer Type 

Kernel / 

Units 
Stride Activation Output Description 

G1 Input Stage 
Random Noise 

+ Feature Input 
– – – 

Latent vector 

combined with 

medical feature 

input 

G2 
Feature 

Projection 

Fully 

Connected 

Layer 

1024 

units 
– ReLU 

High-dimensional 

feature mapping 

G3 
Reshape 

Layer 

Tensor 

Reshaping 
– – – 

Converts vector to 

spatial feature map 

G4 
Upsampling 

Block-1 

Transposed 

Convolution 
3×3 2 

ReLU + 

BatchNorm 

Spatial resolution 

enhancement 

G5 
Upsampling 

Block-2 

Transposed 

Convolution 
3×3 2 

ReLU + 

BatchNorm 

Further feature 

expansion 

G6 
Feature 

Refinement 

Convolution 

Layer 
3×3 1 ReLU 

Texture and edge 

learning 

G7 
Output 

Mapping 

Convolution 

Layer 
1×1 1 Tanh 

Pixel-level image 

generation 

G8 
Generator 

Output 
Synthetic Image – – – 

Generated medical 

image 

 

2.7. Discriminator Architecture 

As shown in Table 2, the discriminator is able to differentiate real and synthetic images even without 

batch normalization. Although MedSynGAN generates high-quality medical images across multiple 

modalities, it remains susceptible to overfitting, particularly with small or imbalanced datasets. Hybrid 

design improves generalization but does not fully prevent sample memorization. Scalability to large, 

multi-institutional datasets and high-resolution or cross-device data remains unverified. Practical clinical 

deployment may be constrained by training cost and complexity, highlighting the need for model 

compression, continual learning, and domain adaptation strategies. 

Table 2. Architecture of Discriminator 

Block 

No. 

Processing 

Stage 
Layer Type 

Kernel / 

Units 
Stride Activation Functional Role 

D1 Input Stage 
Image Input 

Layer 
– – – 

Accepts real or 

generated image 

D2 
Feature 

Extraction-1 

Convolution 

Layer 
3×3 2 LeakyReLU 

Low-level feature 

detection 

D3 
Feature 

Extraction-2 

Convolution 

Layer 
3×3 2 

LeakyReLU + 

BatchNorm 

Mid-level pattern 

learning 

D4 
Feature 

Extraction-3 

Convolution 

Layer 
3×3 2 

LeakyReLU + 

BatchNorm 

High-level 

semantic 

extraction 

D5 Flattening Flatten Layer – – – 
Converts feature 

maps to vector 

D6 
Classification 

Layer 

Fully 

Connected 

Layer 

1 unit – Sigmoid 
Real vs Fake 

decision 
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D7 
Discriminator 

Output 

Probability 

Score 
– – – 

Authenticity 

estimation 

 

2.8. Novel Classification Modelling 

As illustrated in Figure 3, the proposed architecture incorporates Squeeze-and-Excitation (SE) blocks 

within a convolutional neural network (CNN) to significantly enhance feature representation and overall 

model effectiveness. The SE blocks are systematically embedded after selected convolutional layers, 

allowing the network to adaptively recalibrate channel-wise feature responses. By selectively amplifying 

informative channels and suppressing less relevant ones, the network becomes more capable of capturing 

discriminative patterns that are critical for accurate medical image analysis. This channel attention 

mechanism operates in a lightweight yet powerful manner, improving feature sensitivity without 

introducing substantial computational burden. As medical images often contain subtle and localized visual 

cues, such adaptive feature refinement plays a crucial role in improving classification robustness and 

reliability. The inclusion of SE blocks enables the CNN to focus on the most diagnostically meaningful 

information, thereby enhancing prediction accuracy while maintaining efficiency. 

The SE module functions through three key stages. First, the squeeze operation performs global spatial 

information aggregation using Global Average Pooling (GAP). This step compresses each feature map 

across its spatial dimensions, producing a compact channel-wise descriptor. By summarizing global 

contextual information, the network gains an overall understanding of feature relevance across channels. 

Second, the excitation stage models inter-channel dependencies through a small fully connected bottleneck 

structure. The compressed descriptor is passed through two dense layers. The first layer reduces 

dimensionality using a predefined reduction ratio (commonly set to 16) and applies a ReLU activation to 

introduce nonlinearity. The second layer restores the original channel dimension and uses a sigmoid 

activation to generate normalized channel importance weights. Finally, the scaling stage applies these 

learned weights to the original feature maps through element-wise multiplication. This step adaptively 

emphasizes channels that contribute most to the learning task while diminishing the influence of less 

informative features. As a result, the network dynamically learns “what” to focus on, improving its ability 

to extract meaningful representations from complex medical images. Overall, the integration of SE blocks 

enhances model interpretability, stability, and classification performance, making the proposed approach 

particularly suitable for medical imaging tasks where accuracy and efficiency are both critical. 

Advantages: 

1. Improved Feature Learning: SE blocks enhance representation by modeling channel-wise relationships, 

giving higher importance to informative channels and enabling clearer feature discrimination. 

2. Computational Efficiency: SE blocks introduce only a small number of extra parameters, governed by 

the channel size and reduction ratio, ensuring an effective balance between performance and 

complexity. 

3. Stronger Generalization: Adaptive channel attention allows the network to better handle data 

variability, improving robustness and performance on unseen samples. 

4. Easy Integration: The modular design of SE blocks enables seamless incorporation into existing CNN 

architectures. In this approach, they are placed after convolutional blocks to refine intermediate feature 

maps. 

5. Performance Enhancement: SE blocks consistently improve evaluation metrics such as accuracy and F1-

score, especially for datasets with complex or noisy patterns. 

6. Overfitting Reduction: By recalibrating feature importance, SE blocks limit the influence of irrelevant 

patterns, helping to reduce overfitting during training. 
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Figure 3. Architecture of SE-CNN Classification Model 

 

3. Results 

The experimental framework was structured to support reliable training and evaluation of several 

GAN variants, including DCGAN, cGAN, CycleGAN, SRGAN, and the proposed Hybrid GAN. All 

experiments were conducted on Google Colab using NVIDIA T4 GPUs, enabling efficient acceleration of 

deep learning workloads without requiring specialized local hardware. This setup ensured a practical and 

cost-effective environment for large-scale experimentation. The models were evaluated on multiple 

medical imaging domains, including diabetic retinopathy, pneumonia, brain tumors, skin cancer, and 

leukemia, to comprehensively examine their capability to synthesize realistic and clinically relevant 

images. 

As summarized in Table 3, all networks were trained for 1000 epochs with a batch size of 16 to ensure 

sufficient exposure to the data and effective feature learning. A fixed learning rate of 0.0001 and a 

momentum coefficient (β) of 0.5 were used to promote stable convergence. The Adam optimizer was 

selected due to its adaptive learning behavior and proven effectiveness in GAN training. Model 

performance was assessed using generator and discriminator loss values, which reflect adversarial stability 

and image quality. Maintaining identical training settings across all models enabled fair comparison, 

demonstrating the hybrid model’s advantages in training efficiency, computational balance, and image 

synthesis quality for practical clinical applications. 
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Table 3. Hyper Parameters of Hybrid GAN 

Training Setting Configured Value Role in the Model 

Mini-batch size 16 

Controls how many samples are 

processed simultaneously, 

influencing convergence behavior and 

training stability. 

Total training iterations 

(epochs) 
1000 

Defines how many times the model 

learns from the entire dataset. 

Objective function 
Binary cross-entropy 

with logits 

Evaluates the discriminator’s ability 

to correctly classify authentic and 

generated images. 

Generator optimization 

method 
Adam optimizer 

Updates generator parameters to 

improve the realism of synthesized 

images. 

Discriminator 

optimization method 
Adam optimizer 

Adjusts discriminator weights to 

enhance real–fake image 

discrimination. 

Step size (learning rate) 1 × 10⁻⁴ 
Regulates the magnitude of weight 

updates during backpropagation. 

Momentum coefficient 

(β₁) 
0.5 

Balances past gradient influence to 

ensure smoother and more stable 

training. 

As shown in Table 4, the SE-CNN training parameters were chosen to ensure stable and efficient 

learning, using a batch size of 64, 50 training epochs, Binary Crossentropy loss, and the Adam optimizer. 

A learning rate of 0.001 was applied to balance convergence speed and optimization stability while 

enabling effective feature learning. 

Table 4. Hyper Parameters of Novel SE-CNN 

Training Setting Configured Value Role in the Model 

Mini-batch size 64 

Influences gradient consistency 

and overall learning stability 

during training. 

Number of epochs 50 

Specifies how many times the 

model iterates over the complete 

training set. 

Loss criterion 
Binary cross-entropy 

with logits 

Quantifies the prediction error 

between actual and estimated class 

labels in a binary classification 

setting. 

Optimization 

algorithm 
Adam optimizer 

Utilizes adaptive learning rates 

and momentum to accelerate and 

stabilize convergence. 

Learning step size 1 × 10⁻³ 
Controls the scale of parameter 

updates during backpropagation. 

3.1. Generation Images 

Figure 4 illustrates the capability of the proposed Hybrid GAN to synthesize realistic fundus images 

from the Diabetic Retinopathy dataset. The generated samples closely resemble real retinal images by 

accurately preserving essential anatomical components such as the optic disc, macula, and vascular 

structures. The outputs demonstrate natural color consistency, uniform lighting, and detailed textures, 

retaining subtle vascular cues that are vital for diabetic retinopathy assessment. 
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Figure 4. Image Generation for DR 

Figures 5 showcases additional synthetic fundus images generated by the proposed Hybrid GAN for 

the Diabetic Retinopathy dataset. The generated outputs maintain high visual fidelity, accurately 

reproducing retinal landmarks such as the optic disc, macular region, and vascular network. Consistent 

illumination, natural color tones, and preserved fine-grain textures demonstrate the model’s ability to 

generate clinically reliable retinal images. 

 

Figure 5. Image Generation for Pneumonia x-ray 

Figure 6 further validates the robustness of the Hybrid GAN by presenting another set of synthesized 

retinal images. The model effectively captures subtle vascular structures and anatomical continuity, 

ensuring realistic appearance. The clarity and structural coherence of these images highlight the suitability 

of the generated samples for diagnostic evaluation and training purposes. 

 

Figure 6. Image Generation for brain tumor MRI 

Figure 7 Hybrid GAN continues to demonstrate stable performance, producing fundus images with 

well-defined anatomical features and uniform lighting conditions. The preservation of delicate vessel 

patterns and texture details reflects the model’s strength in modeling complex retinal characteristics 

associated with diabetic retinopathy. 
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Figure 7. Image Generation for Skin cancer 

Figure 8 illustrates consistent synthetic image quality across multiple generations. The Hybrid GAN 

successfully maintains color balance, spatial detail, and anatomical accuracy, reinforcing its reliability for 

large-scale retinal image synthesis and data augmentation in medical imaging workflows. 

 

Figure 8. Image Generation for Leukemia cancer 

3.2. Classification Using SE-CNN 

Figure 9 compares confusion matrices obtained without and with Hybrid GAN augmentation.  

     

(a) Without GAN                            (b) With Hybrid GAN 

Figure 9. Classification of Diabetic Retinopathy (a) Without GAN (b) With Hybrid GAN 

Figure 10 highlights a similar trend, where the baseline model struggles with class misclassification 

and achieves low accuracy (0.35). When trained with Hybrid GAN-augmented data, the classifier 

demonstrates balanced performance across classes, achieving a significantly higher accuracy of 0.98. 
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(a) Without Hybrid GAN                            (b) With Hybrid GAN 

Figure 10. Classification of Pneumonia (a) Without GAN (b) With Hybrid GAN 

Figure 11 the use of Hybrid GAN improves classification consistency and reliability. While the 

baseline model exhibits uneven predictions, the Hybrid GAN-enhanced model achieves improved class 

separation and a higher overall accuracy of 0.97. 

 
(a) Without Hybrid GAN                            (b) With Hybrid GAN 

Figure 11. Classification of Brain Tumor (a) Without GAN (b) With Hybrid GAN 

Figure 12 presents confusion matrix results for skin cancer classification. Without Hybrid GAN 

augmentation, the model performance is limited (accuracy 0.77). With Hybrid GAN support, classification 

accuracy increases to 0.98, along with notable gains in precision, recall, and F1-score, confirming its 

effectiveness in complex cancer classification tasks. 
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(a) Without Hybrid GAN                            (b) With Hybrid GAN 

Figure 12. Classification of Skin (a) Without GAN (b) With Hybrid GAN 

Figure 13 demonstrates improved classification outcomes with Hybrid GAN integration. The baseline 

model shows weak performance with an accuracy of 0.52, whereas the Hybrid GAN-augmented model 

achieves balanced predictions across all classes and a substantially higher accuracy of 0.90, emphasizing 

the framework’s robustness across datasets. 

 

(a) Without Hybrid GAN                            (b) With Hybrid GAN 

Figure 13. Classification of Leukemia (a) Without Hybrid GAN (b) With Hybrid GAN 

 

4. Discussion 

Table 5 summarizes generator and discriminator loss values across five medical imaging datasets and 

different GAN architectures. These losses are reported to reflect training stability rather than direct image 

quality. The Hybrid GAN demonstrates the most stable convergence behavior, achieving lower loss values, 
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particularly for Diabetic Retinopathy and Leukemia datasets, indicating reliable and efficient adversarial 

training.  

Table 5. GANs Losses Analysis 

Medical 

Modality 

DCGAN 

(G/D) 

C-GAN 

(G/D) 

CycleGAN 

(G/D) 

SRGAN 

(G/D) 

Proposed 

MixGANMed (G/D) 

Diabetic 

Retinopathy 
4.81 / 4.46 4.61 / 4.42 2.40 / 2.02 4.63 / 4.09 0.52 / 0.43 

X-ray Pneumonia 0.59 / 0.29 0.52 / 0.22 0.69 / 0.38 0.70 / 0.40 1.21 / 1.21 

Brain Tumor MRI 0.78 / 0.47 0.76 / 0.45 1.20 / 0.65 1.42 / 0.82 1.54 / 1.75 

Skin Cancer 

Blood Cell 
6.24 / 6.25 6.22 / 6.21 4.21 / 4.12 6.25 / 6.12 1.01 / 1.22 

Leukemia Cell 5.56 / 5.36 5.23 / 5.23 3.33 / 3.13 5.23 / 5.10 0.29 / 0.22 

*G: Generator Loss, D: Discriminator Loss 

Table 6 reports image quality evaluation metrics. PSNR and SSIM are used exclusively for assessing 

the super-resolution stage, where paired low- and high-resolution images are available. For overall realism 

and distribution-level similarity of generated images, Fréchet Inception Distance (FID) is adopted as the 

primary evaluation metric, as it measures the closeness between real and synthetic image distributions.  

Table 6. GANs Image Quality Analysis 

Dataset Model 
Avg 

FID 

Avg 

IS 

Avg PSNR 

(dB) 

Avg 

SSIM 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
DCGAN 445.96 1.36 14.57 0.50 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
CycleGAN 413.28 1.11 13.77 0.50 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
SRGAN 417.18 1.90 13.00 0.48 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 

Proposed 

GAN 
30.402 4.642 36.742 0.93 

Table 7 compares computational complexity in terms of training time and parameter count. The 

Hybrid GAN exhibits a lightweight and efficient design, requiring minimal training time and fewer 

parameters compared to other GAN variants, particularly SRGAN, which demands significantly higher 

computational resources. 

Table 7. GANs Complexity Analysis 

Dataset Model 
Avg Training Time 

(hrs) 

Trainable 

Parameters 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
DCGAN 5.0 1.2M 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
CycleGAN 7.0 1.8M 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 
SRGAN 8.0 2.1M 

DR, X-ray, Brain MRI, Skin 

Cancer and Leukemia 

Proposed 

GAN 
0.96 0.67M 

 

Table 8 provides a comparison between the proposed Hybrid GAN and existing state-of-the-art 

methods across multiple medical imaging modalities. While prior approaches achieve reasonable 

performance, the proposed model consistently delivers superior image quality metrics while maintaining 

low training cost, demonstrating both effectiveness and efficiency. 
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Table 8. Comparative Analysis of Existing Systems 

Method 
Image 

Domain 
Dataset Epochs PSNR SSIM FID IS Time 

DRForecastGAN 

[1] 
Color DR 200 16.9 0.65 34.4 – – 

GAN-VSP [2] Color DR 10k 35.10 0.90 – 0.12 – 

IFGAN [3] Gray MRI 100 31.11 0.93 – – 15.9h 

Pix2Pix GAN [5] Gray MRI, PET 1000 27.11 0.89 – – – 

Proposed 

Hybrid GAN 
Color + Gray 

Multi-

dataset 
1000 36.74 0.93 30.40 4.64 0.75h 

Table 9 presents classification performance with and without Hybrid GAN augmentation. Across all 

five datasets, the Hybrid GAN markedly enhances classification accuracy and robustness, achieving near-

optimal results in several cases. These findings confirm the Hybrid GAN’s strong contribution to 

improving both synthetic image generation and downstream medical image classification tasks. 

Table 9. Performance Comparison with and Without Hybrid GAN 

Dataset 
Without Hybrid GAN With Hybrid GAN 

ACC P R F1 ACC P R F1 

Brain 

Tumor 
0.91 0.91 0.92 0.91 0.97 0.97 0.97 0.97 

Diabetic 

Retinopathy 
0.37 0.07 0.19 0.10 0.89 0.91 0.90 0.90 

Skin Cancer 0.76 0.78 0.78 0.76 0.98 0.98 0.98 0.98 

Pneumonia 0.36 0.17 0.49 0.25 0.98 0.98 0.98 0.98 

Skin Cancer 0.76 0.78 0.78 0.76 0.98 0.98 0.98 0.98 

 

5. Conclusions 

A novel hybrid generative adversarial framework is introduced to produce high-quality medical 

images across multiple diagnostic domains. The proposed approach integrates the strengths of well-

established GAN variants, including DCGAN, cGAN, and SRGAN, effectively addressing key limitations 

of traditional methods such as training instability, slow convergence, and inadequate structural detail 

preservation. The model is extensively validated on five benchmark medical datasets—Diabetic 

Retinopathy, Pneumonia, Brain Tumors, Skin Cancer, and Leukemia—where it consistently surpasses 

conventional GAN models in terms of training stability, generator and discriminator loss behavior, and 

overall image realism. Both qualitative and quantitative evaluations confirm that the synthesized images 

closely preserve critical anatomical characteristics while minimizing visual artifacts, ensuring strong 

clinical relevance for diagnostic applications. In addition, the framework demonstrates notable 

computational efficiency, requiring only 0.75 hours of training with 0.67 million parameters, achieving a 

favorable balance between resource usage and synthesis quality. Classification performance is further 

enhanced by integrating a Squeeze-and-Excitation–based CNN, which leads to substantial improvements 

in accuracy, precision, recall, and F1-score across all evaluated datasets, supporting reliable automated 

medical diagnosis. 

Future work may extend this framework to additional imaging modalities such as CT and PET, as 

well as rare disease datasets. Incorporating explainable AI techniques could further improve model 

transparency and trustworthiness, while federated learning strategies would enable secure multi-

institutional training. These advancements are expected to broaden real-world clinical applicability and 

strengthen the framework’s impact on medical image synthesis and diagnostic automation. 
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