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________________________________________________________________________________________________________ 

Abstract: Liver cancer, particularly hepatocellular carcinoma (HCC), remains one of the most 

prevalent and lethal malignancies worldwide, underscoring the urgent need for early and reliable 

diagnostic solutions. Conventional diagnostic methods using computed tomography (CT) imaging 

are often limited by inter-observer variability and the high cognitive burden on radiologists. To 

address these challenges, this study proposes a hybrid deep learning framework that leverages 

Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) for effective liver cancer 

detection. The research employs the publicly available 3D-IRCADb1 dataset of contrast-enhanced 

CT scans, with preprocessing and augmentation techniques applied to enhance model 

generalization. Three state-of-the-art architectures, EfficientNet-B0, TinyViT, and MobileViT v2, 

were trained and evaluated to assess their diagnostic performance. Among these, MobileViT v2 

demonstrated superior performance and efficiency in classification tasks. To enhance clinical trust, 

Gradient-weighted Class Activation Mapping (Grad-CAM) was integrated to provide visual 

explanations of model predictions, highlighting regions of interest corresponding to tumor areas. 

The findings indicate that the proposed framework not only ensures robust diagnostic capability 

but also introduces interpretability and efficiency, making it suitable for deployment in clinical and 

resource-constrained environments. This research contributes to advancing AI-driven liver cancer 

diagnostics by bridging the gap between performance and transparency, ultimately supporting 

earlier detection and improved patient outcomes. 
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________________________________________________________________________________________________________ 

1. Introduction 

The liver is a key organ in the human body, involved in numerous vital functions that support overall 

physiological balance and health. These include filtering toxins and waste products from the blood, 

detoxifying hormones, metabolizing drugs, synthesizing essential proteins, supporting immune function, 

and producing bile to aid digestion [4],[7]. Given its central role in metabolic homeostasis and systemic 

health, diseases that impair liver function have profound consequences. Among these, liver cancer, 

particularly hepatocellular carcinoma (HCC), is the most prevalent and aggressive form of primary liver 

malignancy.  

Hepatocellular carcinoma (HCC) commonly arises in individuals suffering from long-term liver 

conditions, including hepatitis B or C infections, liver cirrhosis, and non-alcoholic fatty liver disease. It is 

characterized by rapid progression and poor prognosis when diagnosed at advanced stages. Liver cancer 
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represents a significant global public health challenge. According to GLOBOCAN 2020 estimates, liver 

cancer is the second leading cause of cancer-related deaths in men and the sixth among women. 

Furthermore, it ranks sixth in incidence and third in cancer-related mortality across both sexes [23]. Recent 

projections suggest that the global incidence of liver cancer is expected to exceed one million cases by 2025 

underscoring the urgent need for timely and accurate diagnosis [2]. 

Advancements in medical imaging technologies over the past decade have significantly improved 

the early detection and monitoring of liver cancer. Modalities such as computed tomography (CT), 

magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and X-ray imaging 

have become integral to modern diagnostic workflow [13]. Among these, contrast-enhanced CT scans are 

particularly favored due to their speed, accessibility, high spatial resolution, and ability to capture dynamic 

contrast phases, especially in the portal venous phase (around 60 to 80 seconds after contrast injection) a 

phase that offers the best visibility for detecting tumors [9].  

Despite these technological advancements, diagnostic workflows in clinical practice often rely on 

manual interpretation of imaging data by radiologists, which is inherently subjective, time-consuming, and 

susceptible to inter-observer variability. Studies have shown that evaluating large volumes of CT images 

across multiple phases requires significant expertise and cognitive effort, often resulting in diagnostic 

delays, missed lesions, and inconsistent results [3]. 

1.1. Deep Learning in Medical Imaging 

The integration of deep learning (DL) techniques into medical image analysis has revolutionized the 

field of diagnostic radiology and pathology. Traditional manual diagnosis methods are often time-

consuming, prone to inter-observer variability, and heavily reliant on clinical expertise. These limitations, 

coupled with the growing volume of medical imaging data, have necessitated the development of 

automated and intelligent systems capable of assisting clinicians in identifying, classifying, and monitoring 

diseases with greater efficiency and accuracy. 

Deep learning, which is part of artificial intelligence, has been very effective in pattern recognition of 

large and complicated data sets. Inspired by human brain structure and function, DL models are composed 

of several layers of ANNs that are capable of directly using the raw input data without the need for 

specialized feature engineering. It is quite a nice feature if we talk about the healthcare field, where there 

is a lot of high-dimensional imaging data like CT, MRI, PET, and histopathology slides, which need to be 

processed and understood by the machines. 

One of the defining characteristics of deep learning models in medical imaging is their ability to learn 

hierarchical feature representations. Unlike traditional machine learning algorithms that rely on 

handcrafted features, DL models autonomously discover optimal representations for a given task. This 

enables them to detect subtle anomalies, recognize complex anatomical structures, and adapt to various 

imaging modalities. For instance, in liver cancer diagnosis, deep learning models can learn to distinguish 

between different tissue textures and tumor boundaries, even in noisy or low-contrast images. 

1.1.1. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) represent one of the most prominent and widely used 

architectures in the field of deep learning, particularly suited for analyzing grid-like data structures such 

as two-dimensional images or three-dimensional volumetric scans. Unlike traditional Artificial Neural 

Networks (ANNs), which process input data in a fully connected manner without considering spatial 

correlations, CNNs are explicitly designed to exploit the spatial hierarchies in data. 

To manage the computational load and to control overfitting, pooling layers are typically 

interspersed between convolutional layers. These layers perform downsampling operations, such as max 

pooling or average pooling, which reduce the spatial dimensions of the feature maps while preserving the 

most important information. Pooling also helps the network become invariant to minor translations and 

distortions in the input image, improving its generalization capability. Training a CNN involves learning 

the optimal weights of convolutional filters and fully connected layers by minimizing a loss function (e.g., 

cross-entropy for classification tasks) using optimization algorithms such as stochastic gradient descent 

(SGD) or Adam. Modern CNNs often employ batch normalization to stabilize training and dropout layers 

to prevent overfitting. 

With the advancement of computational resources and the availability of annotated medical datasets, 

CNNs have emerged as the backbone of many diagnostic and prognostic systems. Recent research has 
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expanded their use from standard 2D imaging to 3D volumetric data, enabling more precise modeling of 

anatomical structures and pathologies in computed tomography (CT) and magnetic resonance imaging 

(MRI) scans. In summary, CNNs are a cornerstone of deep learning for visual data, offering a robust, 

scalable, and efficient solution for complex image-based tasks. Their architectural innovations and proven 

efficacy continue to drive progress in computer vision and healthcare applications alike, particularly in 

early disease detection and image-guided diagnosis. 

Figure 1. Architecture of CNN 

2. Related Work 

This section provides a structured review of existing literature relevant to the automated detection 

of liver cancer using deep learning techniques. It aims to examine the progression of computational 

methods that have been employed for analyzing liver-related medical imaging, particularly focusing on 

hepatocellular carcinoma (HCC), the most common and aggressive form of primary liver cancer. This is 

followed by a discussion on the application of Vision Transformers in the medical domain, emphasizing 

their capability to model global relationships across image regions using self-attention mechanisms. Recent 

attempts to create hybrid CNN-Transformer models are covered in the paper as well, indicating the trend 

towards designs that combine the local feature extraction with the long-range dependency. This chapter, 

along with the discussion of model architectures, considers the use of Explainable Artificial Intelligence 

(XAI) tools, for instance, Grad-CAM and SHAP, which are the foremost adopters of the transparency and 

interpretability of AI-driven diagnostic systems. 

The application of deep learning and hybrid artificial intelligence models has significantly 

transformed the landscape of liver cancer diagnosis and classification. Recent years have witnessed an 

influx of research dedicated to improving lesion detection, segmentation, and classification accuracy using 

diverse imaging modalities and learning strategies. The studies discussed below present notable 

approaches, architectures, and innovations aimed at enhancing clinical decision-making in liver cancer 

diagnostics. 

Wan et al., proposed a multi-level, multi-scale fusion convolutional neural network (MMF-CNN) 

designed to classify liver lesions from magnetic resonance imaging (MRI). Their architecture utilized 

multiple CNN branches that processed inputs at different resolutions and depths, allowing for a rich multi-

scale representation of tumor features. At the decision level, the model incorporated Dempster Shafer 

theory for evidence fusion, effectively combining outputs from the various network branches. 

Additionally, the study employed Grad-CAM to provide visual heatmaps that explain which regions of 

the MRI were most influential in the model’s decision, thereby enhancing the interpretability of predictions 

in clinical settings [25]. 

Lee et al., introduced HFS-Net, a three-stage hierarchical fusion strategy for segmenting 

hepatocellular carcinoma (HCC) in contrast-enhanced CT images. The framework combined the strengths 

of multiple specialized models: U-Net for initial liver segmentation, DenseU-Net for tumor feature 

enhancement, and a 3D U-Net for final tumor segmentation refinement across volumetric slices. Each 

model operated on a distinct image phase or tumor size range, and outputs were later merged using a 

tailored fusion protocol. This modular design enabled the system to adapt to diverse lesion presentations 

and improved performance across various phases of dynamic CT imaging [15]. 
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Sridhar, Kavitha, Lai, & Kavin, presented a hybrid framework combining geodesic distance 

transformation and CNN classification for liver tumor segmentation from CT images. The process began 

with a semi-automated stage where radiologists marked the inner boundary of lesions, which was then 

refined using geodesic mapping to derive accurate tumor contours. These segmented lesions were fed into 

a convolutional neural network optimized using a Coot algorithm, which is a nature-inspired 

metaheuristic technique. The CNN classified the lesions based on extracted spatial features, producing 

strong segmentation and classification outcomes through a combination of manual expertise and 

automated processing [22]. 

Kriegsmann et al., employed CNN architectures such as EfficientNetV2B0 and ResNetRS50 to classify 

liver tissue from digitized whole-slide histopathological images. The study compiled an extensive dataset 

of over 200,000 tile images, extracted from more than 700 patient samples. The classification task included 

distinguishing between benign tissue, hepatocellular carcinoma, metastatic tumors, and other lesion types. 

A multiple-instance learning strategy was adopted to ensure that tile-level predictions could be aggregated 

into accurate case-level diagnoses. The research emphasized the value of high-throughput digital 

pathology combined with deep learning for objective and scalable liver cancer assessment [12]. 

Sarfati et al., designed a classification system that merges deep learning and radiomics to evaluate 

liver tumors in multiphase contrast-enhanced CT scans. Their two-stage approach involved using a CNN 

to extract image features related to LI-RADS scores, followed by the extraction of radiomic descriptors. 

These were combined and fed into classical machine learning models for final classification. The hybrid 

nature of the system allowed for a more nuanced interpretation of liver lesions, closely resembling the 

diagnostic reasoning process of experienced radiologists, while also maintaining algorithmic efficiency 

[20]. 

Kang, Ting, Ting, & Phan, introduced CAFCT-Net, a hybrid CNN-Transformer segmentation 

network for liver tumor detection in CT scans. The model incorporated Atrous Spatial Pyramid Pooling 

(ASPP), attention gates, and Attentional Feature Fusion (AFF) modules to extract multi-scale contextual 

features and refine tumor boundaries. The architecture leveraged the global receptive field of Transformers 

and the spatial sensitivity of convolutional layers to produce high-resolution segmentations. The model 

achieved strong Dice coefficients and intersection-over-union (IoU) scores across public datasets, reflecting 

its robustness in segmenting challenging liver tumors [11]. 

Bousabarah et al., developed an automatic segmentation model based on a U-Net architecture to 

detect liver and hepatocellular carcinoma regions from multiphase MRI. The dataset included sequences 

from arterial, portal venous, and delayed imaging phases. The model achieved high Dice similarity scores 

for liver segmentation and reasonable performance for HCC segmentation. Post-processing steps, such as 

false positive suppression and threshold optimization, further improved segmentation quality. The study 

demonstrated the feasibility of deep learning for fully automated liver tumor segmentation in MRI [5]. 

Chen, Z., Dou, Luo, & Yao, presented a multitask segmentation model based on the Swin 

Transformer for liver tumor analysis in contrast-enhanced MRI. The architecture incorporated self-

supervised learning strategies and was trained to simultaneously predict segmentation masks and signed 

distance maps. Deep supervision and attention-based modules were used to refine both tasks in parallel. 

The use of the Swin Transformer allowed the model to capture hierarchical image structures, and its 

multitask formulation led to improved segmentation accuracy across multiple tumor classes and sizes [6]. 

Gao et al., presented STIC, a deep learning model for liver tumor classification using dynamic CT 

imaging and patient clinical data. The architecture integrated convolutional neural networks for spatial 

analysis and gated recurrent units (GRUs) for modeling temporal sequences across CT phases. The study 

evaluated its performance on a large dataset including hepatocellular carcinoma, cholangiocarcinoma, and 

liver metastases. STIC achieved diagnostic accuracy comparable to experienced radiologists and 

highlighted the potential of combining imaging and clinical metadata for liver cancer diagnosis [8]. 

Zhan et al., proposed a Transformer-based architecture for predicting early recurrence of 

hepatocellular carcinoma using multi-phase MRI. The model treated MRI scans from arterial, portal 

venous, and delayed phases as sequential inputs and processed them using a Transformer encoder to 

capture inter-phase relationships. Feature aggregation was applied to summarize spatial and contrast 

information across phases, enhancing recurrence prediction. The design demonstrated that Transformer-
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based modeling can effectively utilize the temporal nature of multiphase imaging for postoperative risk 

stratification in liver cancer [27]. 

3. Proposed Methodology 

The methodological framework adopted to develop a hybrid Convolutional Neural Network (CNN) 

and Vision Transformer (ViT) based model for the detection and classification of liver cancer using 

computed tomography (CT) images. The chapter elaborates on the data acquisition process, preprocessing 

techniques, model architecture design, training strategies, evaluation metrics, and explainability 

mechanisms integrated into the proposed system. 

Figure 2. Research Methodology 

3.1. MobileViT v2 

MobileViT v2 represents a next-generation, lightweight neural network architecture combining the 

strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) in a mobile-efficient 

framework. First introduced by [18] It was specifically designed to overcome the performance-efficiency 

trade-off found in earlier vision models. This makes MobileViT v2 particularly suitable for applications 

that demand real-time inference and low computational resources, such as medical image classification, 

where both local feature detection and global contextual understanding are essential. 

SaTraditional CNNs excel at capturing local spatial patterns via convolutional kernels but struggle 

with modeling long-range dependencies across an image. MobileViT v2 addresses this limitation by 

embedding Transformer-like attention modules within a CNN backbone, enabling the model to integrate 

both fine-grained and broad contextual information. It refines the design of ViT and Swin Transformer 

components to be more resource-efficient, allowing deployment on edge devices or under memory 

constraints. MobileViT v2 combines the strengths of Convolutional Neural Networks (CNNs) and Vision 

Transformers (ViTs) in a unified, efficient architecture optimized for performance and speed on mobile 

and embedded devices. Unlike pure Transformer models, which rely solely on self-attention, or CNNs, 

which focus on local feature extraction, MobileViT v2 is designed to learn both local and global 

representations through a structured pipeline of Mobile Inverted Residual Bottleneck (MBConv) blocks 

and lightweight Transformer blocks. 

3.2. Experimental Setup 

The proposed study was implemented and executed in a GPU-accelerated environment to ensure 

efficient model training and inference for liver tumor detection. An NVIDIA T4 GPU was utilized, enabling 

faster computation for multiple deep learning experiments. The workflow comprised four key stages: 

DICOM image preprocessing, dataset preparation, training of multiple deep learning models, and 

interpretability analysis using Gradient-weighted Class Activation Mapping (Grad-CAM). 

3.2.1. DICOM Preprocessing and Conversion 



Journal of Computing & Biomedical Informatics                                          Volume 09  Issue 02                                                                                         

ID : 1082-0902/2025  

The raw dataset was obtained from the publicly available 3D-IRCADb1 collection, which provides 

abdominal CT scans in DICOM format. To prepare the images for deep learning pipelines, the following 

preprocessing steps were undertaken: 

• Libraries Used: pydicom was employed for reading and extracting metadata from medical images, 

while OpenCV (cv2) was used for image normalization and conversion. 

Procedure: Patient-specific image files were recursively extracted from the 3Dircadb1.zip 

archive. All PATIENT_DICOM/image_* files were located for processing. Each DICOM file 

underwent pixel intensity normalization, after which it was saved as a JPEG image in the 

designated directory /content/data/HCC/. This conversion ensured compatibility with common 

deep learning frameworks while retaining essential diagnostic information from the CT images. 
 

 

Figure 3. Architecture of MobileViTv2 Model 

 

3.3. Results of Efficient Net B0 

The implementation and training of the proposed framework were carried out using Google Colab, 

a cloud-based platform that provides GPU-accelerated computing resources for efficient deep learning 

experimentation. Among the models evaluated, EfficientNet-B0 demonstrated superior performance, 

achieving a test accuracy of 99.2%, highlighting its effectiveness in the liver cancer detection task. The 

following figures show the training and validation accuracy of this model. An efficient Net B0 model 

applied on the 3Dircadb1 dataset that contains liver cancer images and obtained 99.2% accuracy. 

Table 1. Efficient Net-B0 results in Google Colab 

Model Test Accuracy Precision Recall F1 Score AUC 

Efficient 

Net-B0 
0.9925 1.0000 0.9843 0.9921 1.0000 
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3.3.1. ROC Curve and AUC Analysis of Efficient Net B0 Model 

The ROC curve for the EfficientNet-B0 model is presented in Figure 4. The curve demonstrates an 

almost ideal trajectory, rising steeply towards the top-left corner of the graph. The model achieved an AUC 

of 1.000, which indicates perfect classification capability between hepatocellular carcinoma (HCC) and non-

HCC cases. This flawless performance confirms EfficientNet-B0’s superiority in balancing sensitivity and 

specificity, making it the best-performing model in this study. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. AUC-ROC Curve of Efficient Net B0 Model 

3.3.2. Efficient Net B0 Confusion Matrix 

The confusion matrix of the EfficientNet-B0 model is shown in Figure 5. The matrix provides deeper 

insight into the classification ability of the model beyond overall accuracy. Out of 210 hepatocellular 

carcinoma (HCC) cases, the model correctly classified all 210 as HCC, resulting in zero false negatives, 

which highlights the model’s excellent sensitivity. Similarly, out of 191 non-HCC cases, the model correctly 

identified 188 cases and misclassified only 3 cases as HCC. 

From these results, the following performance metrics can be inferred: 

• True Positives (TP): 210 

• True Negatives (TN): 188 

• False Positives (FP): 3 

• False Negatives (FN): 0 

Figure 5. Efficient Net B0 Confusion Matrix 
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3.4. Results of TinyVit 

The implementation and training of the proposed framework were carried out using Google Colab, 

a cloud-based platform that provides GPU-accelerated computing resources for efficient deep learning 

experimentation. Among the models evaluated, Tiny Vit demonstrated superior performance, achieving 

an accuracy of 97.8% highlighting its effectiveness in the liver cancer detection task. The following figures 

show the training and validation accuracy of the model. 

Table 2. TinyViT results in Google Colab 

 

 

 

3.4.1. TinyViT Confusion Matrix 

The confusion matrix of the TinyViT model is shown in Figure 6. The matrix provides deeper insight 

into the classification ability of the model beyond overall accuracy. Out of 198 hepatocellular carcinoma 

(HCC) cases, the model correctly classified 186 as HCC, resulting in 12 false negatives. Similarly, out of 191 

non-HCC cases, the model correctly classified all 191 as  non-HCC, resulting in 0 false positives. 

From these results, the following performance metrics can be inferred: 

• True Positives (TP): 198 

• True Negatives (TN): 191 

• False Positives (FP): 0 

• False Negatives (FN): 12 

 

 

 

 

 

  

 

 

 

                  
 

 

 

 

 

 

Figure 6. Confusion Matrix of TinyViT Model 

3.5. Result of MobileVit v2 Model 

The implementation and training of the proposed framework were carried out using Google Colab, 

a cloud-based platform that provides GPU-accelerated computing resources for efficient deep learning 

experimentation. Among the models evaluated, MobileVit v2 demonstrated superior performance, 

achieving an accuracy of 98.5%, highlighting its effectiveness in the liver cancer detection task. The 

following figures show the training and validation accuracy of this model. 

Table 3. MobileViT v2 results in Google Colab 

 

Model Test Accuracy Precision Recall F1 Score AUC 

Tiny 

ViT 
0.9700 0.9700 0.9700 0.9700 1.0000 

Model Test Accuracy Precision Recall F1 Score AUC 

Tiny Vit 0.9854 0.9840 1.0000 0.9026 0.9999 
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3.5.1. ROC Curve of MobileViT v2 

The ROC curve for MobileViT v2 is displayed in Figure 7. This model achieved an AUC score of 

0.9999, which reflects near-perfect classification performance. The curve remains close to the top-left 

border, demonstrating high sensitivity and specificity across thresholds. 

Figure 7. AUC-ROC Curve of MobileViT v2 Model 
3.5.2. MobileViT v2 Confusion Matrix 

The confusion matrix of the MobileViT v2 model is shown in Figure 8. The matrix provides deeper 

insight into the classification ability of the model beyond overall accuracy. Out of 169 hepatocellular 

carcinoma (HCC) cases, the model correctly classified 128 as HCC, resulting in 41 false negatives. Similarly, 

out of 190 non-HCC cases, the model correctly classified all 190 as  non-HCC, resulting in 0 false positives. 

From these results, the following performance metrics can be inferred: 

• True Positives (TP): 169 

• True Negatives (TN): 190 

• False Positives (FP): 0 

• False Negatives (FN): 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Results of MobileViTv2 Model 
 

3.6. Training Accuracy vs Epoch of all Models 

The following Figure shows the training accuracy vs epoch of Efficient Net B0, TinyVit and MobileVit 

v2 model. 
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Figure 9. Results of MobileViTv2 Model  

3.7. Model comparison on Test Accuracy 

The following Figure shows the test accuracy comparison of Efficient Net B0, TinyVit, and MobileViT 

v2 models. 
 

Figure 10. Results of MobileViTv2 Model 

 

3.8. Results Comparison of Efficient Net B0, TinyVit, MobileViT v2 Models 

The following table shows all the results Comparison of Efficient Net B0, TinyVit, and MobileViT v2 

Model. 

Table 4. All Results Comparison of Models 

Models Accuracy Precision Recall F1 Score AUC 

Efficient Net B0, 0.9925 1.0000 0.9843 0.9921 1.0000 

Tiny Vit 0.9700 0.9700 0.9700 0.9700 1.00 

MobileViT v2 0.9854 0.9840 1.0000 0.9026 0.9999 
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3.9. Model Comparison on Text Metrix 

The following figure shows the model comparison on test metrics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Model Comparison on Text Metrix 

3.10. GRAD-CAM Implementation Visual 

In this study Gradient-weighted Class Activation Mapping (Grad-CAM) was implemented to 

provide interpretability and visual explanations of the model’s predictions. The primary motivation behind 

incorporating Grad-CAM was to ensure that the framework does not function as a “black box” but instead 

highlights the regions of interest within the CT scans that directly influenced the classification of liver 

cancer. Figure 12 presents a Grad-CAM visualization generated from one of the CT scans in the dataset. 

The heatmap overlay clearly demonstrates that the proposed model concentrated its attention on the liver 

region, specifically highlighting the area with abnormal tissue patterns. The red and yellow zones in the 

visualization represent regions of high activation, signifying areas most strongly correlated with the 

prediction of liver cancer, while the blue regions correspond to less relevant areas. This indicates that the 

model is correctly identifying clinically significant tumor regions rather than being distracted by irrelevant 

features within the scan. The successful implementation of Grad-CAM in this research adds a crucial 

interpretability layer to the classification framework. By providing visual justification for each prediction, 

the approach not only enhances trust in the model’s decision-making process but also increases its potential 

acceptance in clinical settings. Moreover, this interpretability aspect allows radiologists and medical 

experts to cross-validate the predictions with their domain knowledge, ensuring greater reliability and 

transparency of the AI-driven diagnostic system. 

Figure 12. GRAD-CAM Implementation Visual 
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4. Accuracy Comparison against other work 

The following table compares the accuracy results of the proposed models with those of other 

authors’ work. 

Table 5. Accuracy comparison of proposed models with existing studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

The study concludes that deep learning, when applied through advanced CNN architectures, holds 

substantial promise in addressing the limitations of conventional diagnostic practices for liver cancer. By 

systematically evaluating EfficientNet-B0, TinyViT, and MobileViT v2, the research identified EfficientNet-

B0 as the optimal model, with a classification accuracy of 99.2 percent on the 3Dircadb1 dataset. Its ability 

to combine accuracy, efficiency, and robustness demonstrates that CNN-based models, when carefully 

scaled and optimized, can outperform more complex architectures in specific medical imaging 

applications. The integration of Grad-CAM further strengthened the clinical relevance of this research by 

offering transparency and interpretability. Predictions were not only accurate but also explainable, 

addressing the critical concern of AI models functioning as "black boxes." This capability ensures that 

diagnostic support provided by the system can be trusted by radiologists and other healthcare 

professionals. Taken together, these findings suggest that EfficientNet-B0 represents a highly effective 

candidate for integration into AI-assisted diagnostic workflows for liver cancer detection. 
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Author (s) Method Accuracy 

(Ahmed, Rahouma, 

& Massoud, 2024) 
U-Net, ResNet50 96% 

(Ma, Gong, Qiu, Ma, 

& Yu, 2024) 

Radiomics, SVM, KNN, MLP 

Random Forest, XGBoost, LightGBM 
88.2% 

(Slama, Sahli, Amri, 

& Labidi, 2025) 
Hybrid V-Net, VGG16 96.52% 

(Luo, et al., 2025) UNet++ 93.6% 

(Lal, et al., 2025) 
ML techniques 

(CNN, RNN, SVM, KNN) 

CNN: 96.7%, RNN:94.5% 

KNN: 92.2%, SVM: 89.9% 

(Gowda & 

Manjunath, 2025) 
UNet70 94.58 % 

Proposed Methods 

Efficient -Net B0, 

Tiny ViT, 

MobileViT v2 

Efficient -Net B0: 99.2% 

Tiny ViT: 97.8% 

MobileViT v2: 98.5% 
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