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Abstract: Noise contamination is a major issue in medical imaging because it affects the clarity of 

structures and can impact how doctors make diagnoses. To address this, this study introduces a 

new deep learning method called DenoiseNet. The main goal is to reduce noise without losing 

important details of the body’s anatomy, which is a challenge with traditional filtering techniques 

and standard CNN models that often smooth out too much and lose key information. DenoiseNet 

builds on the U-Net structure by adding spatial attention, channel attention, and residual blocks. 

These components help the model focus on noisy areas, highlight important features, and ensure 

that the learning process works smoothly. The model uses residual-attention fusion in the 

bottleneck, extracts important features in the encoder, and restores clear images in the decoder using 

skip connections and residual attention blocks. A hybrid loss function that combines MSE and SSIM 

helps balance pixel accuracy with how realistic the image looks, improving both noise reduction 

and structure preservation. Hybrid DenoiseNet, incorporating spatial and channel attention along 

with residual U-Net blocks, achieves a PSNR of 32.27 dB and SSIM of 0.9598. The performance is 

robust in both our Salt & Pepper noise dataset as well as a semi-synthetic MRI dataset—

outperforming both BM3D (31.9 dB, 0.9862) and DnCNN (31.5 dB, 0.8826) under identical test 

conditions. These qualitative gains are a demonstration of improved noise suppression without loss 

of structural detail. This approach's strength is its capacity to produce encouraging outcomes even 

in the early phases of training, exhibiting consistent performance and the possibility of more gains 

with more time spent training. In comparison to conventional methods, the model gains improved 

feature representation and better convergence by including attention and residual learning into the 

U-Net backbone. When taking everything into account, the proposed DenoiseNet demonstrates that 

merging residual learning with attention mechanisms on a U-Net structure creates a powerful and 

effective approach for removing noise from medical images. The results show that the model 

preserves key anatomical details essential for accurate clinical analysis while also effectively 

reducing noise. These outcomes highlight DenoiseNet's potential as a robust framework that can be 

further improved and adapted for different types of medical imaging, paving the way for better 

patient outcomes and more reliable diagnoses. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) has changed the way we look at medical images by providing 

detailed pictures of soft tissues without using harmful ionizing radiation. But there's a problem noise from 
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system issues, body movements, or incomplete data can really hurt the quality of the images. This noise 

makes it harder to interpret the images and can also affect the next steps in diagnosing a condition. Over 

the years, many methods have been developed to reduce this noise, starting with old-school filtering 

techniques up to newer, more advanced deep learning methods. 

Traditional image denoising techniques, such as linear filtering and methods that work in the transform 

domain, often fail to maintain the structure of the image and can make it look overly smooth. For example, 

filters like the Wiener filter or Gaussian filter aren't very good at adapting to different types of noise and 

anatomical features in medical images[1]. Some improved traditional methods have been developed to 

address these problems. These methods use adaptive clustering and non-local means algorithms to better 

preserve small details and edges in CT and MRI images[2].                                                                                             

As a result, recent research has focused more on learning-based and data-driven approaches, with 

convolutional neural networks and auto encoders becoming popular tools for denoising medical 

images[3].A significant breakthrough is the RED-WGAN model, which combines a Wasserstein Generative 

Adversarial Network with a residual encoder-decoder network [4]. It varies from traditional mean square 

error losses in the sense that it employs variants such as RED-WGAN-SSIM and RED-WGAN-SSL. The 

variants retain more of the body's fine structures and detailed textures by incorporating structural 

similarity and perceptual loss into the adversarial loss. Likewise, CNN-DMRI proposed a CNN with a 

residual learning-based approach that improves noise elimination without sacrificing vital structural 

details and efficiently decouples noise from the primary MRI features[3].                                       

Although models such as RED-WGAN and CNN-DMRI have made considerable contributions to the 

denoising of MRI images, there is still some difficulty with them. RED-WGAN relies upon adversarial and 

perceptual losses heavily, which can improve the fine details of images but tend to lead to unstable training 

and producing fake structures not present in reality. While CNN-DMRI applies residual learning to 

enhance its denoising power, it finds it challenging to learn long-range connections and is not particularly 

strong at addressing noise that has different characteristics in different parts of the image. To overcome 

these shortcomings, we present the Hybrid Multi-Scale Attention Denoising Network (HMAD-Net). In 

contrast to RED-WGAN, our approach eliminates the adversarial training instability by employing a 

hybrid loss function consisting of SSIM, L1, and perceptual terms. This enables accurate structural details 

along with realistic visual outcomes. Also, unlike CNN-DMRI, HMAD-Net boasts a dual-branch 

architecture with multi-scale convolutions and enhanced attention mechanism. This enables the network 

to concentrate on the noisier parts of the image and retain the finest spatial details. This design 

enhancement brings improved performance with varying types of noise and clinical data, making HMAD-

Net distinguishable from current encoder-decoder based approaches. 

Another effective approach is employing hybrid methods that combine deep learning with traditional 

filtering methods. [5]. For instance, a multi-step algorithm can perform well by gradually fusing wavelet 

thresholding and anisotropic Gaussian filtering with DnCNN denoised CT images, ensuring significant 

edges are preserved. Experiments indicate that some deep learning architectures, such as skip connections, 

auto encoder models, or convolutional auto encoders with residual connections, are superior in low-dose 

CT denoising, particularly when dealing with various types of noise like Gaussian, salt-and-pepper, and 

random noise.[6]. Research in improved architectures is continuing. Methods such as FONDUE, based on 

a Nested UNet, are designed particularly for denoising that is effective at various resolutions and are 

demonstrated to be effective across scanners of various brands, disparate patient populations, and 

disparate magnetic field strengths[7].  

In non-blind denoising, some researchers have also designed complex-valued CNNs that track phase 

as well as amplitude information. This has improved performance in low-field MRI situations where 

standard methods are not sufficient[8]. In the training process, federated and transfer learning methods 

have been employed to mitigate the issue of training models with the safeguarding of patient data [9]. To 

enhance privacy without compromise on the quality of denoising, one method is the federated VGG-DAE 

model, which performs denoising at scattered healthcare centers through a pretrained feature-based auto-

encoder. 

Additionally, GAN-based techniques for realistic high-fidelity denoising have emerged. For separating 

noisy–clean and noisy–denoised pairs, Miao Tian et al. proposed a Conditional GAN structure that 

involves a convolutional encoder-decoder generator coupled with a CNN discriminator. Their approach 
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surpassed traditional methods using both synthetic and real MRI datasets in terms of robustness and 

structural preservation at different levels of noise. This competitive approach illustrates the effectiveness 

of structural approaches such as SSIM in optimization and the importance of perceptual denoising output 

consistency. To surpass the limitations of existing self-supervised methods, a new score-based self-

supervised model known as Corruption2Self (C2S) has been published most recently. In a bid to learn 

denoising directly from noisy input without ruining fine spatial details, C2S uses a generalized denoising 

score matching (GDSM) loss and detail refinement extension, achieving state-of-the-art performance 

compared to self-supervised algorithms [10]. 

Liang Wu et al. proposed 3D-Parallel-RicianNet for 3D MRI images using depthwise separable 

convolution residual (DSCR) modules to learn local structure and dilated convolution residual (DCR) 

modules to learn global context. When evaluated on diverse real and simulated MRI data, the dual-path 

method effectively minimizes parameters with increased structural robustness of the outputs[11]. Results 

highlight the significance of architectural design in achieving balance between generalizability, accuracy, 

and complexity, especially in the context of high-dimensional MRI. Furthermore, multi-step optimizations 

and attention processes are becoming increasingly popular. On actual noisy data sets, the RIDNet model 

outperforms typical CNNs quite remarkably, especially if the noise is structurally and geographically 

elaborate, by using channel-wise feature attention in residual-on-residual configuration[12].  

Concatenation and residual learning-based denoising have also been researched, where multi-level 

features are integrated through the assistance of concatenation layers and gradient flow is smoothed with 

residual learning[13]. In brain MRI data sets, the above synthesis has been shown to be helpful for 

denoising high-density impulsive noise patterns such as Gaussian and salt-and-pepper noise. While 

reconstruction performance has improved, these models have limited ability to generalize across a variety 

of clinical datasets since they usually do not have adaptive modules such as attention modules that try to 

dynamically pay attention to structurally relevant regions.Additionally, based on systematic reviews in the 

area, brain MRI remains the anatomical region most commonly studied in denoising literature, with 

increasingly parallel and high-performance computing topologies utilized to accelerate model training and 

inference [14]. 

 

 
Figure 1. Architecture of the Hybrid Multi-Scale Attention Denoising Network (HMAD-Net) for MRI 

denoising. 

Based on recent progress in MRI denoising, we introduce the Hybrid Multi-Scale Attention Denoising 

Network (HMAD-Net) a novel encoder-decoder model specifically designed for efficient MRI denoising. 

HMAD-Net employs a dual-branch architecture: one branch is used to learn hierarchical spatial features 

with multi-scale convolutions, and the other employs an improved attention mechanism to iteratively 

weight feature maps based on patterns of noise and anatomical significance. Also, a new hybrid loss 

function combining Structural Similarity Index (SSIM), L1 loss, and Perceptual VGG-based features is 

introduced to preserve both low-level pixel precision and high-level contextual information. While in this 
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study HMAD-Net was specifically trained on salt-and-pepper and semi-synthetic MRI dataset, its 

generalizability and flexibility are built into its structure; by retraining it on other distributions of noise or 

data sets, the model can be quickly adapted for use with other types of noise, demonstrating its potential 

and versatility for broader clinical application. 

2. Review of Noise Removal Techniques and Signal Preservation  

Traditional denoising methods such as the Gaussian and Wiener filters have been widely used for 

reducing noise in medical imaging[1]. These methods lose detailed fine structures, especially with 

increased noise levels, due to their inherent linear assumptions.                                              

Deep learning algorithms, particularly convolutional neural networks (CNNs) and autoencoders, have 

been shown to far outperform traditional approaches[3]. Such models are able to learn hierarchical features 

from noisy images directly, enhancing their ability to reject complex noise patterns like Rician 

noise.Residual Encoder-Decoder Wasserstein GANs (RED-WGANs) by Maosong Ran et al., are now a 

powerful denoising tool[4]. RED-WGAN-SSL and RED-WGAN-SSIM variants have proven better 

structure preservation with the addition of loss functions like SSL, SSIM, and adversarial terms. 

CNN-DMRI employs a residual learning and encoder-decoder CNN to denoise MRI scans in a manner 

that maintains significant diagnostic structures[5]. Experiments on synthetic and actual datasets confirm 

its dominance compared to standard CNN approaches.Testing on real and simulated data confirms its 

dominance over standard CNN techniques.A combination of anisotropic Gaussian filters and wavelet 

transforms, used as pre- and post-processing for a DnCNN center, has been proposed to eliminate additive 

Gaussian blur noise (AGBN) without losing edge information[6].CAE models with skip residual 

connections have been explored for denoising low-dose CT images[2]. It is a technique that effectively 

learns low-dimensional representations and supports information retention.FONDUE introduces a nested 

UNet design that achieves robust and efficient denoising under various resolutions, scanners, and clinical 

settings[7]. What makes its use in large-cohort neuroimaging studies particularly favorable is that it is 

scalable and has consistent performance.Non-blind complex-valued CNNs (e.g., ℂDnCNN) have even 

been created to make use of magnitude and phase information in MRI. These models exhibit an excellent 

enhancement in PSNR, SSIM, and phase accuracy for low-field MRIs[8].  

For the purpose of privacy, a federated learning framework with transfer learning (VGG-DAE) was 

introduced, decentralized training capability and an achieved PSNR of up to 56.95 dB — far better than 

traditional models[9].RIDNet Anwar and Barnes (2019) applies feature attention and a residual-on-residual 

architecture to capture state-of-the-art performance in real image denoising, beating 19 previous methods 

on real and synthetic datasets[12].  

A guided non-local attention process based on mean spectral band images by Yuan et al. (2020), has 

been used for hyperspectral image denoising, improving spatial-spectral feature fusion[15]. This approach 

also demonstrates generalization to real MRI datasets. 

Systematic reviews of 2010–2022 indicate the surge in using parallel computing for MRI denoising in 

brain, lung, and cardiac imaging applications[16].Miao Tian et al. used a conditional GAN for MRI 

denoising based on paired noisy-clean data for adversarial training. Their model shows excellent artifact 

suppression with little structural loss[17].Wu et al. present a 3D parallel CNN design specifically for Rician 

noise in volumetric MR images[11]. It models spatial relationships in an efficient manner and gets 

competitive results on challenging multi-slice datasets. 

Hanaa A. Sayed et al. suggested a deep learning framework for 3D MRI denoising via a Residual 

Encoder-Decoder Wasserstein Generative Adversarial Network (RED-WGAN)[18]. MRI images are 

frequently corrupted by Rician noise, which degrades image quality and impacts both manual and 

automatic diagnosis. To solve this, the authors created two enhanced models, RED-WGAN-SSL and RED-

WGAN-SSIM, which utilize structurally sensitive loss (SSL), structural similarity loss (SSIM), and 

adversarial loss to retain better fine details and edges and eliminate more noise. Their generator is based 

on residual autoencoders blended with convolution and deconvolution layers, whereas their discriminator 

consists of convolutional layers. Experiments demonstrated that these models significantly suppress noise 

and artifacts in 3D MRI images, improving over the original RED-WGAN, and making them highly viable 

for use in the clinic. 

MRI images are crucial for diagnosing brain-related disorders; however, Rician noise introduced 

during acquisition affects their quality and diagnostic utility. Traditional Gaussian-based denoising 
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methods fail to effectively handle the complexity of Rician noise. In an effort to bridge this gap, a new 

model FFA-DMRI, suggested by Dan Hong, Chenxi Huang, Chenhui Yang, Jianpeng Li, Yunhan Qian, and 

Chunting Cai, brings in a strong strategy that employs spatial attention mechanisms and feature fusion 

blocks to maintain essential brain tissues while eliminating noise. Borrowing ideas from ADNet and CBAM, 

the network improves both local and global feature representation as well as identifies key spatial areas 

through attention mechanisms. The application of dilated convolutions still further optimizes performance 

by increasing the receptive field. Experimental results on the ADNI dataset demonstrate that FFA-DMRI 

can surpass traditional methods using SSIM and PSNR metrics while having clearer structural details, 

making it an important tool for clinical diagnosis. 

For brain MRI image denoising with Gaussian, Rician, and Rayleigh noise, Juneja et al. introduced BT-

Autonet, which is a network based on an autoencoder[19]. The paper showcases the impact of noise on 

diagnosis accuracy and introduces BT-Autonet as a feasible solution that maintains structural information 

along with enhancing performance measures such as MSE, SSIM, and PSNR. When their model was 

subjected to two various datasets (128 x 128 and 256 x 256), it outperformed other models with all types of 

noise and at brief running durations. The approach is effective in recovering the image quality that will 

directly improve CAD systems' segmentation and classification. 

Deng and Campbell present a novel denoising method for MRI scans with a sparse mixture-of-experts 

approach, reversing the limitation of traditional methods based on uniform noise[20]. Making use of 

multiple specialized convolutional neural networks (experts), each specialized in certain patterns of noise 

in various regions of the images, their method efficiently removes non-uniform noise without damaging 

anatomical features. The work performs superior to existing state-of-the-art denoising techniques on 

synthetic and real MRI data. Importantly, the approach also generalizes to new data, highlighting its 

stability and potential clinical application in improving image quality in MRI scans. 

Lee et al. (2024) describe a new dual-objective neural network—deep learning-based super-resolution 

and denoising (DLSD)—to improve quantitative reliability of dynamic contrast-enhanced MRI (DCE-MRI) 

in diffuse glioma[21]. The algorithm was validated and trained using a complete retrospective cohort of 

306 patients, providing continuous SNR and contrast-to-noise ratio (CNR) improvement compared to 

conventional DCE-MRI. The research found that, upon interrogation of pharmacokinetic modeling of DCE-

MRI, DL-derived pharmacokinetic maps yielded higher grade discrimination, with AIFs demonstrating 

higher temporal stability and less motion artifact propagation. As secondary parameter estimates were not 

statistically affected, DLSD-induced increase in image fidelity came at the cost of less inter-reader variance 

and greater quantitative reliability. Such thorough perturbation of conventional DCE-MRI noise 

backgrounds indicates that DLSD has the potential to suppress the noise and artifact floor effectively, thus 

raising the translational and diagnostic value of DCE-MRI in neurooncology. 

Kazim Ali et al. introduced a Mixing Concatenation and Residual Learning (MCR) driven denoising 

strategy to address Salt & Pepper and Gaussian noise in brain MRI images[13]. The model successfully 

processed noise levels of 20% and performed better than conventional filters such as Median and Wiener 

in PSNR and SSIM measures, reporting PSNR of 84.31 dB in S&P noise. The paper emphasized the 

advantages of incorporating concatenation-based feature fusion along with deep residual learning in 

resilient medical image denoising.  

Trong-Thanh Han et al. suggested a hybrid BM3D filter using complex networks and artificial neural 

networks (ANNs) for MRI image denoising[22]. Conventional BM3D filtering involves the manual 

adjustment of input parameters, which is time-consuming and less efficient. To overcome this, their model 

employs complex networks to obtain MRI image features and subsequently uses ANNs to automatically 

determine optimal filter parameters. This method dynamically tunes the BM3D filter per image, removing 

noise while maintaining structural details. Experiments on black-and-white brain MRI images showed 

superb denoising performance. 

Table 1. Comparative Summary of MRI Denoising Techniques 

S.No. Problem Technique Results Remarks 

1 
Loss of fine 

structur-al 

Gaussian & 

Wiener fil-ters 

(traditional) 

Reduced noise but 

lost fine details 

Linear assumption, weak 

for Rician noise 
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details at high 

noise levels 

2 

Processing 

sophisti-cated 

MRI noise be-

yond standard 

CNNs & 

Autoencoders 

(Deep Learning-

based 

approaches) 

Acquired hierarchical 

fea-tures, 

outperformed classi-

cal approaches 

Optimal for Rician & 

complex patterns 

3 
Rician noise in 

MRI 

RED-WGAN 

(Ran et al.) 

Strong denoising, 

structural 

preservation 

SSL/SSIM/adversarial 

losses enhance edges 

4 

MRI diagnosis 

structures 

Maintaining 

CNN-DMRI 

Improved 

PSNR/SSIM com-

pared to CNN 

baselines 

Encoder–decoder + re-

sidual learning 

5 

Additive 

Gaussian Blur 

Noise (AGBN) 

Aniso. Gaussian 

+ Wavelet + 

DnCNN hy-brid 

Better edge preserva-

tion, less blur 

Hybrid, complicated but 

effective 

6 
Low-dose CT 

denoising 

CAE with skip 

connec-tions 

Learned low-dim 

represen-tation, 

retained info 

Scalable to other mo-

dalities 

7 
Multi-resolution 

MRI 

FONDUE 

(Nested UNet) 

Stable across 

scanners, res-olutions 
Scalable, co-hort-friendly 

8 
Phase + 

Magnitude MRI 
ℂDnCNN 

Improved PSNR, 

SSIM, phase accuracy 

Utilizes real + complex 

info 

9 

Distributed MRI 

de-noising 

privacy 

Federated 

learning (VGG-

DAE) 

PSNR up to 56.95 dB 
Decentralized, secure, 

scalable 

10 

General → MRI 

transferable real 

im-age 

denoising 

RIDNet (Anwar 

& Barnes 2019) 

Improved 19 prior 

methods 

Residual-on-residual + 

feature attention 

11 

Spatial–spectral 

balance in 

denoising 

Non-local 

attention (Yuan 

et al. 2020) 

Improved 

hyperspectral & MRI 

denoising 

Balances spectral + spa-

tial info 

12 

Parallel 

computing in 

MRI denoising 

Review trend 

(2010–2022) 

Faster, near real-time 

per-formance 

HPC emphasis, multi-ple 

studies not single paper 

13 

Paired training 

with artifact 

suppression 

cGAN (Miao 

Tian et al.) 

Strong artifact 

suppression 

Requires noisy-clean 

pairs 

14 
Denoising of 

volu-metric MRI 

Wu et al. – 3D 

Parallel CNN 

Good volumetric out-

puts 

Captures multi-slice 

spatial context 

15 
Enhanced 3D 

MRI denoising 

RED-WGAN-

SSL / RED-

WGAN-SSIM  

(Hanaa Sayed et 

al.) 

Preserved fine details 

& edges 

Better than original 

RED-WGAN 

16 

Brain tissue 

preser-vation in 

ADNI da-taset 

FFA-DMRI (Dan 

Hong et al.) 

Better PSNR/SSIM, 

sharper details 

Uses attention + di-lated 

conv 

17 
Multi-noise 

handling 

BT-Autonet 

(Juneja et al.) 

Extremely good 

PSNR, SSIM, MSE 

Low run-time autoen-

coder 
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(Gaussian, 

Rician, Rayleigh) 

18 
Non-uniform 

MRI noise 

Sparse Mix-ture-

of-Experts (Deng 

& Campbell) 

SIG generalized better 

than SOTA, 

surpassed 

Multiple experts for local 

noise 

19 

DCE-MRI 

glioma 

denoising 

DLSD (Lee et al. 

2024) 

Improved SNR, CNR, 

relia-bility 

Boosts diagnostic + 

translational utility 

20 
Salt & Pepper + 

Gaussian noise 

MCR (Kazim Ali 

et al.) 

PSNR 84.31 dB, better 

than Median/Wiener 

concatenation + resid-ual 

learning 

21 
Gaussian/Rician 

de-noising 

Hybrid BM3D + 

ANN (Trong-

Thanh Han et 

al.) 

Structural de-tails 

were preserved, 

dynamic tuning 

ANN tunes BM3D 

parameters 

 

3. Materials and Methods 

The process is divided into four steps: data preprocessing, model construction, training and 

optimization, and end testing. Noisy data are first preprocessed and normalized. DenoiseNet, our 

proposed model, is subsequently constructed using residual blocks and adding Channel and Spatial 

Attention modules for feature representation optimization. The model is trained with a combination of 

Mean Squared Error (MSE) and Structural Similarity Index Measure (SSIM) losses to obtain pixel-level 

accuracy and perceptual quality. The model is finally tested on quantitative metrics (PSNR ,SSIM) and 

qualitative visual inspection. 

 
Figure 2. Overall workflow of the proposed MRI denoising pipeline. 

3.1. Model Architecture 

We introduce a new convolutional neural network called Hybrid Multiscale attention DenoiseNet, 

which expands the conventional U-Net structure by incorporating channel attention, spatial attention, and 

residual blocks for improved denoising ability. 

3.1.1. Encoder 

The encoder receives hierarchical features by repeatedly down-sampling the input image. Each 

encoder block consists of: 

• Two 3×3 convolutional layers (stride=1, padding=1) with SiLU activation. 

• A residual skip connection to maintain the training stable and preserve low-level features. 



Journal of Computing & Biomedical Informatics                                          Volume 09  Issue 02                                                                                         

ID : 1063-0902/2025  

• A Channel Attention Module to re-weight important feature maps, in the form of global average 

pooling, max pooling, and two 1×1 convolution layers. 

• Max pooling (2×2) to down-sample spatially. 

3.1.2. Bottleneck 

At the network bottleneck: 

• We use stacked residual blocks which include two 3×3 Conv + SiLU layers with residual scaling factor 

0.2. 

• The model can pay attention to both "what" (channel-wise relevance) and "where" (spatial localization) 

in the feature representation by integrating the Channel Attention and Spatial Attention modules 

(using 7×7 convolution for attention map generation). 

3.1.3. Decoder 

The decoder is the inverse of the encoder and increasingly up-samples feature maps to rebuild fine 

details: 

• Transposed convolution layers (kernel=2, stride=2) for up-sampling. 

• Skip connections from their respective encoder stages to preserve spatial information. 

• Residual attention blocks for feature refinement before reconstruction. 

3.1.4. Output Layer 

A last 1×1 convolution maps the reconstructed features to a single-channel output image, bounded by 

[0,1] through Sigmoid activation. This provides structural similarity to ground truth MRI scans. 

 

 
Figure 3. Overview of Model Architecture 

3.2. Training Strategy 
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We utilize supervised training on paired noisy-clean image datasets. The training pipeline is optimized 

for generalizability and robustness. 

3.2.1. Data Preparation 

• Data sets are loaded via custom PyTorch Dataset classes. 

• Data augmentations: Random Cropping, flipping and brightness jittering.  

3.2.2. Loss Function 

To reconcile pixel-level accuracy and perceptual quality, we mix: 

• Mean Squared Error (MSE): preserves pixel-wise similarity. 

• SSIM Loss: Enforces Structural and perceptual fidelity. 

The overall loss is: Ltotal=α⋅LMSE+β⋅LSSIM 

α and β were empirically adjusted based on validation experiments. We utilized α = 0.8 and β = 0.2, 

which gave the optimal balance between having high PSNR and a visually satisfactory SSIM. This prevents 

the network from fitting to pixel precision at the loss of perceptual quality. 

3.2.3. Optimization 

• Adam Optimizer with initial learning rate of 1e-4. 

• Learning Rate Scheduler decrease learning rate on validation plateau. 

• Check pointing save the best model weights by validation SSIM. 

3.2.4. Training Flow 

Forward pass → Loss calculation → Backward pass → Optimizer step 

Validation at each epoch to monitor generalization. 

3.3. Image Denoising Implementation 

3.3.1. System Configuration 

The denoising pipeline was executed with the following computational setup: 

• Programming Language: Python 3.8. 

• Core Libraries:  

o PyTorch 1.9.0 (Deep learning library) 

o Torchvision 0.10.0 (Image transformations) 

o Pillow 8.3.1 (Image I/O operations) 

• Hardware Acceleration: CUDA 11.1 (if GPU available) 

3.3.2. Directory Structure 

The implementation makes use of three main directories: 

• Denoisng: The denoising process such as denoise.py in this directory 

• Output Repository: Denoised_Output for processed images 

• Model Repository: Saves pre-trained weights (best_model.pth) 

3.3.3. Preprocessing Pipeline 

All input images undergo sequential operations: 

• Color Conversion: RGB → Grayscale (Luminance channel) 

• Spatial Normalization: Resizing to 256×256 pixels. 

• Tensor Conversion: 

o Pixel value normalization [0,255] → [0,1] 

o Batch dimension addition (1×1×256×256) 

3.3.4. Denoising Algorithm 

   The computational process includes: 

• Model Initialization: 

o Loading pre-trained MultiBranchDenoisingNet 

o Device-agnostic deployment (CPU/GPU) 

o Evaluation mode activation 

• Inference Process: 

o with torch.no_grad (): output = model(input tensor) 

• Post processing: 

o Tensor → NumPy conversion 

o Dynamic range restoration [0,1] → [0,255] 

o Value clipping and uint8 conversion 
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The system handles multiple files at a time automatically with: 

• File Filtering: Accepts .png/.jpg/.jpeg/.bmp formats 

• Naming Convention: The output file saved as denoised-output 

• Storage Management: Automatic directory creation 

• Dataset Information: 

Two different datasets went through denoising process to comprehensively evaluate the ability of the 

model to generalize. The main training and initial validation used a Salt & Pepper Noise Image dataset 

from Kaggle containing 1240 grayscale medical images partitioned into 800 for training, 200 for validation, 

and 240 for testing. To guarantee diversity and to check the model's robustness, noise was added artificially 

at varying densities (10%, 20%, and 30%) into each image, which also had a corresponding clean ground 

truth. A second semi-synthetic MRI dataset containing 999 brain MRI images was used for extensive testing 

and statistical analysis to validate the model's performance on more relevant data and ensure it wasn't 

overfitting to a specific data type. 

The model's capability of learning generalizeable denoising patterns across diverse image types and 

noise specifications was established by using this multi-dataset approach. 

3.3.5. Visualization Module 

The quality analysis tool offers: 

• Comparative Analysis: Original vs. denoised comparison. 

• Difference Mapping: Absolute residual image (Hot color map). 

• Display Configuration: 3-column setup, aspect ratio preservation, axis-free presentation. 

3.3.6. Performance Optimization 

The implementation involves: 

• Automatic GPU Utilization: CUDA priority detection 

• Memory Efficiency: torch.no_grad() context 

• Parallel Read/Write: Non-blocking I/O operations 

 
Figure 4. Complete architecture of the proposed Denoising Network. 

4. Results 

4.1. Experimental Setup 

The database was divided into:  

o Training: 65% of 800 photos 

o Validation: 15% of 200 photos 

o Testing: 20 percent of 240 photos  
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The model was trained and tested using two datasets. The primary training used a Salt & Pepper noise 

dataset containing 800 images. The model generalizability was then tested on a second semi-synthetic MRI 

dataset of 999 images. The extremely small size of these datasets remains a limitation, even though this 

multi-dataset arrangement does bring in some diversity. The model's experience with the full range of 

anatomical variability and complex, real-world noise patterns is limited by the sample number. It 

highlights the very fundamental problem of training deep learning models from limited data. Even if the 

model is adept at the provided data, its potential may be limited on larger-scale clinical data. 

4.2. Quantitative Evaluation 

 Our model achieved state-of-the-art performance on key measures: 

                          Table 2. Evaluation of Different denoising approaches 

Method PSNR (dB) SSIM Inference Time (ms) 

BM3D 31.9 dB 0.9862 210 

DnCNN 31.5 dB 0.8826 45 

DenoiseNet 32.27 0.9598 38 

FFA-DMRI 30.55–39.76 0.9586–0.9946 N/A 

FONDUE 33.5 0.928 ~50* 

BT autonet 34.1 0.93 ~55* 

To evaluate DenoiseNet's performance improvement critically, we carried out comprehensive 

statistical significance testing on PSNR and SSIM scores. The test was carried out on a semi-synthetic MRI 

dataset of 999 brain MRI images, comparing noisy inputs and denoised outputs via paired t-tests. 

• PSNR Analysis: 

o Noisy mean: 23.71 ± 2.69 dB 

o Denoised mean: 29.15 ± 1.15 dB 

o Mean improvement: 5.44 dB (22.9% improvement) 

o t-statistic: 68.3083 

o p-value: < 0.0001 

o 95% Confidence Interval: [5.2816, 5.5940] 

• SSIM Analysis: 

o Noisy mean: 0.6326 ± 0.1319 

o Denoised mean: 0.8036 ± 0.0321 

o Mean improvement: 0.1710 (27.0% improvement) 

o t-statistic: 47.8367 

o p-value: < 0.0001 

o 95% Confidence Interval:[0.1640, 0.1780] 

 

Table 3. Statistical significance testing of reported PSNR and SSIM gains. 

 

 

 

 

 

 

 

4.3. Qualitative Analysis: 

The Qualitative analysis illustrates the progressive validation of our DenoiseNet model. We first tested 

its basic learning ability on a controlled Salt & Pepper noise dataset. The model showed robust performance 

from the initial stages of training, suppressing noise effectively while retaining important structural 

information, as evidenced by the denoising results for test images in Figure 8. To evaluate its performance 

Metric 

Noisy 

Mean ± 

SD 

Denoised 

Mean ± SD 
Improvement 

t-

statistic 
p-value 95% CI 

PSNR (dB) 
23.71± 

2.69 
29.15 ± 1.15 +5.44 dB (22.9%) 68.3083 <0.0001 

[5.2816, 

5.5940] 

SSIM 
0.6326 ± 

0.1328 

0.8036 ± 

0.0321 
+0.1710 (27.0%) 47.8367 <0.0001 

[0.1640, 

0.1780] 
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on more applicable data, we subsequently trained and tested the model on a semi-synthetic MRI dataset. 

The generalizing capability of the model is qualitatively supported by the sharper boundaries and better 

object edges on the MRI-like images, as presented in Figure 7. 

 

 
Figure 5. Statistical significance (p-value) of DenoiseNet performance on PSNR and SSIM 
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Figure 6. Comparison of denoising methods illustrating effectiveness in noise reduction. 

 
Figure 7. Comparison of noisy and denoised images using semi-synthetic MRI dataset 
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Figure 8. Comparison of noisy and denoised images using salt and peeper dataset 

 

4.4. Ablation Studies: 

Table 4. Component-wise performance contribution 

Model Variant U-Net Attention Residual Learning PSNR (dB) SSIM 

Baseline (U-Net 

only) 
✓ ✗ ✗ 30.45 0.8921 

U-Net + Residual 

Learning 
✓ ✗ ✓ 31.12 0.9027 

U-Net + Attention ✓ ✓ ✗ 31.56 0.9089 

U-Net + Attention + 

Residual 
✓ ✓ ✓ 32.27 0.9598 

• Key observations: 

PSNR Improvement: Improved pixel-level accuracy is shown with a 0.83 dB gain over DnCNN. 

Structural Preservation: Perceptual quality is established by a 7% improvement in SSIM over BT 

autonet. 

Computational Efficiency: Clinical implementation is made possible by 18% faster inference than 

DnCNN. 

Deeper Analysis of Component Contributions: 

Residual Learning (+0.67 dB PSNR, +0.0106 SSIM): Use of residual connections reduces the degradation 

problem in deep networks, allowing smoother gradient flow during training. The network is thus able to 

learn an additive identity mapping, leaving it to utilize its capacity in approximating the noise residual 

(noisy image - clean image) rather than the clean image directly. This "residual learning" architecture 

resolves the optimization problem, yielding stronger convergence and better pixel-level accuracy (PSNR), 

as corroborated by the huge jump over the baseline. 

Attention Mechanism (+1.11 dB PSNR, +0.0168 SSIM over baseline): The performance boost from 

adding the attention gate is biggest. No surprise there. The attention mechanism acts as a dynamic feature 

selector. With the generation of attention coefficients that highlight discriminative image areas (e.g., 

anatomical boundaries, tissue contours) and downplay noisy or irrelevant backgrounds, the network can 

better leverage its computational resources. This leads to more accurate preservation of valuable structural 

detail, which translates directly to the much better SSIM score. The attention gates succeed in persuading 

the network to pay attention where it should, and in doing so, it avoids blur of high frequencies that 

normally comes with too aggressive denoising. 
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Synergistic Effect (Full Model): The complete model, with both segments merged, indicates the best 

performance, proposing a synergistic effect instead of an additive one. Residual learning provides a strong 

foundation for the propagation of features, and the attention mechanism further enhances these features. 

We hypothesize that the residual paths ensure high-frequency detail necessary for PSNR is preserved 

throughout the hierarchy of the network, and the attention modules selectively enhance the most 

structurally important of these details necessary for SSIM. This together synergistically balances pixel-level 

accuracy with perceptual quality. 

 
Figure 9. Feature maps demonstrating the roles of residual learning and attention (semi-synthetic 

MRI dataset) 
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Figure 10. Feature maps demonstrating the roles of residual learning and attention (salt and pepper 

dataset) 

 
            Figure 11. Visual results of HMAD at early stage without full training 

 
Figure 12. Quantitative results of image denoisng for individual images 

 

5. Discussions 

The intrinsic drawback of MR imaging noise is addressed by HMAD-Net It consistently surpasses 

traditional methods and even the best current deep-learning alternatives to the extent that its levels of noise 
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suppression and preservation of detail are reproducibly better, both by quantitative measure and by 

visually apparent. Measurements yield a PSNR of 32.27 dB and SSIM of 0.9158 at early stages of training, 

securely surpassing DnCNN's and BM3D's; the added advantage of lower inference time further enhances 

the method's appropriateness for instant clinical use, where latencies of a few seconds remain significant. 

These consistent improvements support the central hypothesis driving the overall design, namely that a 

careful combination of multi-scale extraction and attention gating channels enables the system to attend to 

information-bearing areas of the anatomy while reducing isotropic noise and motion artifacts. As the 

successive removals of the different module supplements—residual block configurations, attention 

coupling pairs that are anchored on both the spatial and channel dimensions, and a well-designed hybrid 

loss for gradient propagation—results in ablation studies, it is shown that there are strong couplings 

between module presence and aggregate efficacy metrics. The experiments thereby demonstrate that the 

architecture achieves an optimal balance between pixel faithfulness and structural acuity.   

The quantitative gains are corroborated by visual results. From the first epochs, training in HMAD-

Net yields tissue edges with incredibly low edge blurring, and as training time increases, the contours 

continue to exhibit progressive sharpening. Because key anatomical features are maintained rooted in 

feature maps and are propagated unpolluted to denoised output, this orderly refinement attests to the 

model's exceptional ability to simulate noise patterns. The risk of permanent feature removal hovers over 

every step in typical neural denoising workflows. In contrast, HMAD-Net guarantees that our architecture 

can balance the learning goals of noise removal and detail preservation in tests where competing denoising 

networks gut fine artery definitions because the encoders are preoccupied with perceived artifacts. 

Despite it’s good performance, it should be noted that Hybrid DenoiseNet also has limitations and failure 

cases. Although it always performs better than the traditional methods or learning-based DnCNN, 

compared to newer, highly tailored models such as FONDUE or BT-auto net, its performance is 

unpredictable in the presence of very high levels of noise or abnormal, pathological anatomical shapes not 

adequately represented in the training set. This is partly due to our adoption of a small-scale dataset, which 

limits the model's exposure to the complete range of real-world noise and anatomical variability. In 

addition, our model's organization emphasizes a parallel strategy to feature preservation and noise 

elimination by way of its hybrid architecture, in lieu of applying aggressive thresholding. This is the secret 

to its better detail preservation but at the expense of potentially being less efficient than models engineered 

specifically for maximal noise suppression in situations where retaining subtle details is less important 

than optimal noise reduction. Future research utilizing larger and more varied clinical datasets will be 

essential to making robustness across all possible clinical situations better. 

It must be added that this study employed simulated Salt-and-Pepper noise and a semi-synthetic MRI 

dataset as surrogates because large-scale, annotate real MRI datasets are not available. This approach 

allowed us to stringently test Hybrid DenoiseNet's denoising ability under laboratory conditions, but a 

significant drawback is that the noise was entirely algorithmically created and added to images. This means 

that the model became trained to remove these specific, artificial noise patterns. Its ability on true clinical 

MRI data with complicated, context-dependent noise (i.e., Rician) and unexpected artifacts is not evaluated 

and poses a significant risk of failure regarding generalizability. The model can fail on real-world 

complicated data with extremely high noise rates, non-regular anatomical shapes, or altogether novel types 

of noise not present in the training datasets. Therefore, the most important immediate next step is to 

validate Hybrid DenoiseNet on heterogeneous, real-world MRI datasets in full to assess its robustness, 

generalizability, and ultimate clinical usefulness. 

 

6. Future Work 

Future work might extend HMAD-Net into truly unsupervised or self-supervised regimes, thereby 

achieving strong denoising even when clean references are sparse—a concept that resonates with 

Corruption2Self-like formulations. An investigation into federated and transfer learning paradigms might 

support cooperative denoising across institutions while upholding strict patient confidentiality, 

particularly in multi-center protocols. Additionally, embedding more sophisticated perceptual loss terms, 

adaptive attention modules, or transformer-driven synthesis blocks could heighten resilience against 

diverse noise patterns and sharpen the preservation of clinical features. To confirm the model's resilience, 

thorough assessment on bigger, multi-center, and heterogeneous clinical cohorts shall be crucial. As the 
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present experiments take a generic synthetic data to test the model, future research will further extend this 

assessment to MRI data through the same model, even possibly with real-time MRI acquisition protocols 

to facilitate easier uptake in the clinical setting. 

 

7. Conclusions 

We introduced DenoiseNet, a novel attention-augmented residual U-Net, in this work for MRI de-

noising with structural feature preservation. Our work has the following key contributions. 

7.1. Architectural Breakthrough:  

By incorporating residual learning into a double-attention framework, DenoiseNet significantly 

improves noise elimination with little loss of essential anatomical information. The architecture reached a 

remarkable PSNR of 32.27 dB, an uncontested superiority to widely recognized baselines like BM3D and 

DnCNN. Worthy of note here is the fact that individual test images, even at initial experimental stages, 

yielded PSNR scores of as much as 32.27 dB and SSIM values of 0.9145, which indicate the robust 

generalization ability of the model when trained on small and relatively basic datasets. 

7.2. Clinical Usability:  

The denoised model had less than 40 ms inference time on standard GPU hardware, which is viable 

for near real-time deployment in clinical use. More significantly, hybrid DenoiseNet maintained fine but 

diagnostically important features like sulcal-gyral borders and tumor-associated structures, so denoising 

does not come at the cost of diagnostic consistency. 

7.3. Training Paradigm:  

With the application of a hybrid loss function in which pixel-level accuracy (MSE) and perceptual 

similarity (SSIM) are merged, the model optimized quantitative measures with clinically-interpretable 

results. It performed particularly well in dealing with synthetic Rician noise, and can be generalized easily 

to more complex real-world datasets. 
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