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Abstract: Visual impairment handicaps tens of millions of people globally, usually restricting their 

performance of routine activities independently. Recent developments in deep learning and 

computer vision have unveiled new promises for the development of smart assistive devices. This 

paper discusses the use of Convolutional Neural Networks (CNNs) in designing smart glasses to 

assist visually handicapped people. By a comparison of 15 new studies in this field, we compare 

and contrast different CNN-based methods for object detection, obstacle evasion, text reading, and 

navigation assistance. They show great promise for real-time scene interpretation and user 

interaction in wearable devices. Our results emphasize important design trends, challenges, and 

performance metrics for deploying CNNs on low-power wearable platforms. The findings of this 

work constitute a basis for developing functional smart glasses that are capable of offering real-time 

feedback and enhancing the mobility, safety, and independence of visually impaired individuals. 
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1. Introduction 

More than 2.2 billion people worldwide have some vision impairment, and these conditions are often 

not well treated because there is no affordable and accessible technology for assistive use [1, 13]. For those 

with profound or total loss of vision, mobility within daily surroundings creates ongoing obstacles that 

threaten independence, safety, and quality of life [7, 12]. To close this gap, scientists have been turning 

increasingly to intelligent assistive devices, one of which are smart glasses [3, 6]. 

Smart glasses with computer vision technology seek to offer instant feedback regarding the state of the 

surrounding world. Such systems employ cameras and processing units to find obstacles, identify objects, 

read text, and even recognize individuals [4, 10]. While common computer vision approaches are generally 

constrained in terms of generalizability in dynamic, unstructured environments, this has been responsible 

for a trend of leaning towards deep learning-based methods, specifically Convolutional Neural Networks 

(CNNs), because of their better performance in image identification and scene comprehension tasks [14, 

15]. 

CNNs have proven to be highly accurate in applications like object detection (e.g., YOLO, SSD), 

semantic segmentation (e.g., U-Net, DeepLab), and text recognition (e.g., CRNN). Their capability to learn 

hierarchical features from raw images directly makes them a good choice for constructing efficient and 

scalable visual perception modules for assistive devices [2, 11]. By incorporating CNN-based vision models 
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on wearable smart glasses, one can assist visually impaired users with obstacle avoidance, indoor 

navigation, object localization, as well as reading printed text out loud [9, 13]. 

There have been extensive investigations of CNN architectures for assistive vision applications, 

usually in combination with other hardware such as ultrasonic sensors, GPS modules, or bone conduction 

speakers. Encouraging results notwithstanding, there are difficulties in making such systems run in real 

time, consume power efficiently, be affordable, and operate reliably in uncontrolled situations [9, 10]. 

This article discusses a literature review of recent development in CNN-based assistive vision systems, with an 

emphasis on their implementation in smart glasses for visually impaired people. We review 15 recent research 

papers that introduce CNN-based solutions to real-time object identification, text-to-speech, obstacle detection, 

and indoor navigation. The aim of this review is to derive common methodologies, make a performance 

comparison, and find research gaps that can be targeted by future work. The conclusions of this comparative 

analysis form the basis for the development of a realistic and smart prototype of intelligent glasses based on 

CNNs to enable visually impaired people in their day-to-day life [5, 8]. 

 
Figure 1. Smart Prototupe 

 

2. Literature Review 

The evolution of assistive devices for the blind has accelerated with the incorporation of Convolutional 

Neural Networks (CNNs) into wearable devices, specifically smart glasses [1, 3]. With their superior 

performance in image classification and object detection tasks, CNNs have been the key to making real-

time scene perception and navigation possible for blind and visually impaired users [14, 15]. 

There have been several studies that have used CNNs for object classification and detection to aid in 

environmental perception. For example, some researchers have designed smart glasses that had a camera 

module based on CNN to assist the visually impaired with detecting objects and navigating around 

obstacles [12]. Their system aimed at translating visual information into auditory feedback so that users 

can perceive their environment using sound [10]. Equally, a CNN-based architecture has been suggested 

which enabled visually impaired users to identify principal objects and read text, enhancing situational 

awareness [13]. 

Other research has put more focus on real-time performance in smart glasses prototypes, combining 

CNNs to achieve accurate object classification with minimal delay [6]. The system could identify different 

objects, such as street signs and cars, to make it feasible for outdoor use [2]. On the contrary, some studies 
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have come up with a CNN-based wearable system with speech output and gesture recognition that 

improved user-device interaction [5, 8]. 

Recent research has also centered on enhancing the computational efficiency of CNN models for 

wearability. For instance, researchers have applied lightweight CNN architectures tailored for use in 

embedded systems with a trade-off between energy efficiency and accuracy [9]. Along the same lines, 

another study showed how TensorFlow Lite and MobileNet could be deployed in low-power devices for 

in-device object recognition [11]. 

Reading and text detection have also remained primary focus areas. Research has utilized OCR and 

CNNs to read off-press print from signs, books, and screens and synthesized it to speech via Text-to-Speech 

(TTS) systems [13]. This ability is crucial for learning and navigational assistance in everyday life [9]. 

Some of the work has progressed to facial recognition and indoor localization in addition to object 

detection. One study described an indoor intelligent navigation system based on CNNs and LiDAR [4], 

whereas another dealt with facial recognition to help users recognize individuals in their environment [5]. 

These studies altogether emphasize how the range and sophistication of CNN-based assistive systems are 

increasing [6, 8]. 

While these advances have been made, real-time processing, accuracy across various environments, 

and ease of use remain as issues. Further, incorporating these CNN systems into light, comfortable, and 

cost-effective smart glasses remains a major engineering challenge [12, 9]. 

Table 1. Comparative Analysis Table  

Author(s) 

and year 

Application 

Focus 

CNN 

Architecture 
Features 

Feedback 

Mode 
Limitation 

Pathan & 

Kadam 

2020 

Object 

detection 
Custom CNN 

Real-time object 

detection via 

camera 

Audio 

Limited object 

categories, 

indoor-only 

Samant & 

Uplane 

2020  

Obstacle and 

object 

detection 

CNN + YOLO 

Lightweight 

wearable 

device, edge 

computing 

Audio 

Needs 

improved 

outdoor 

performance 

Kumar & 

Chitra 

2021 

Real-time 

object 

recognition 

CNN + SSD 

Fast inference, 

efficient edge 

hardware 

integration 

Audio 

Struggles with 

low-light 

environments 

Nair et al. 

2019 

Gesture + 

Object 

recognition 

CNN + RNN 

Gesture control, 

real-time 

camera-based 

object detection 

Audio + 

Vibration 

Limited 

gesture 

vocabulary 

Rios et al. 

2022 

Wearable 

embedded 

vision system 

MobileNet 

Lightweight, 

energy-efficient 

processing 

Audio 

Trade-off 

between speed 

and accuracy 
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Sharma & 

Kaur 

2021 

Text reading 

(OCR) 

CNN + 

Tesseract OCR 

Scene text 

reading and 

conversion to 

speech 

Audio 

Accuracy 

drops with 

handwritten 

or curved text 

Alam & 

Rachid 

2020 

Indoor 

navigation 

CNN + LiDAR 

Fusion 

Map 

construction, 

obstacle 

avoidance 

Audio + 

Haptic 

Complex 

setup and 

calibration 

Lee et al. 

2019 

Facial 

recognition 

CNN + 

FaceNet 

Person 

identification 

from real-time 

video feed 

Audio 

Privacy 

concerns, 

limited 

training set 

Shinde & 

Raut 

2019 

Object 

detection 

MobileNet + 

TensorFlow 

Lite 

On-device 

processing, 

mobile-friendly 

Audio 

Limited 

scalability for 

more object 

classes 

Singh et al. 

2021 

Navigation 

and reading 

YOLOv3 + 

CNN OCR 

Indoor object + 

text reading 

integration 

Audio 

No outdoor 

GPS 

integration 

Patel et al. 

2022 

Daily life 

assistance 
Custom CNN 

Real-world 

testing with 

common objects 

Audio 
Limited to a 

few scenarios 

Das & Roy 

2023 

Scene parsing 

+ reading 
EfficientNet 

Better accuracy 

in cluttered 

scenes 

Audio 
High memory 

requirement 

Verma & 

Mehta 

2022 

Voice-aided 

navigation 

CNN + Voice 

assistant 

Voice 

interaction, 

simplified 

control 

Voice + 

Audio 

Limited NLP 

capability 

Gupta & 

Khan 

2023 

Currency 

recognition 
CNN + OCR 

Detects 

denomination 

and warns user 

Audio 

Needs 

retraining for 

new 

currencies 
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Roy & 

Subramanian 

2024 

Multilingual 

OCR 
CNN + CRNN 

Reads multiple 

languages from 

images 

Audio 
Slight delay in 

TTS output 

 

3. Materials and Methods  

The aim of this research is to create a prototype of smart glasses based on Convolutional Neural 

Networks (CNNs) which can guide visually impaired people through their surroundings by identifying 

objects and offering auditory feedback. The approach is broken down into the following main phases: 

 
Figure 2. Working Methodology 

3.1. System Overview 

The envisioned smart glasses system includes a camera placed on the frame of the glasses, a small 

processing device (for example, Raspberry Pi or Jetson Nano), and an audio output device (earphones or 

bone conduction headset). The camera takes live pictures of the environment around the user, which are 

then processed by a CNN-based model to identify and categorize objects. The recognized objects are then 

converted into audio messages and relayed to the user in real-time. 

3.2. Data Collection and Preprocessing 

• Datasets Used: The project utilizes publicly available datasets such as: 

o COCO (Common Objects in Context) 

o Open Images Dataset V6 

o ImageNet 

o Custom captured dataset with common indoor/outdoor scenes 
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• Preprocessing Steps: 

o Resize and normalize images to standard input dimensions (e.g., 224×224) 

o Data augmentation (rotation, scaling, brightness shift) to enhance model robustness 

o Annotation using tools like LabelImg for custom object classes 

 

 

 
Figure 3. Computer Vision Pipline 

3.3. CNN Model Design 
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• Architecture: Multiple CNN architectures are evaluated for deployment: 

o MobileNetV2: For edge-efficient object detection 

o YOLOv5: For real-time multi-object detection 

o EfficientNet: For high-accuracy object classification 

• Training Parameters: 

o Optimizer: Adam 

o Loss Function: Categorical Crossentropy / Binary Crossentropy (based on output type) 

o Epochs: 50–100 depending on convergence 

o Evaluation Metrics: Accuracy, Precision, Recall, mAP (Mean Average Precision) 

• Training Environment: 

o Python with TensorFlow/Keras or PyTorch 

o GPU-enabled environment (Google Colab or local machine) 

3.4. Real-Time Integration 

• Deployment Hardware: Raspberry Pi 4 or NVIDIA Jetson Nano with camera module 

o Model Conversion: Trained CNN models are optimized and converted to lightweight formats (e.g., 

TensorRT or TFLite) for real-time inference on edge devices 

• Software Stack: 

o OpenCV for real-time camera feed processing 

o PyTorch/TensorFlow Lite runtime for inference 

o Text-to-Speech engine (gTTS or pyttsx3) for converting predictions to speech 

3.5. Audio Feedback Module 

• Recognized objects are mapped to predefined audio labels. 

• Voice output is provided using: 

o Onboard speakers 

o Earphones or bone conduction speakers 

• Short and context-aware phrases are generated, e.g., "Obstacle ahead", "Person to your left", or "Chair in 

front". 

3.6. Testing and Evaluation 

• Functional Testing: Tested in various indoor and outdoor environments with different lighting and 

object conditions 

• User Testing: Conducted trials with visually impaired individuals (or blindfolded volunteers) to assess 

usability 

• Performance Metrics: 

o Object detection speed (frames per second) 

o Inference latency 

o Accuracy of recognition in real-time 

o User satisfaction and ease of use via surveys 

3.7. Limitations and Scope for Future Work 

• Current implementation supports only a limited number of object classes. 

• Future work will include: 

o Integration with GPS and obstacle depth detection (via LiDAR or stereo vision) 

o Multilingual audio support 

o Gesture-based control interface 

3.8. Methodology Implementation  

3.8.1. Dataset Selection: COCO 2017 

The COCO (Common Objects in Context) 2017 dataset was used for this study. It is a large-scale, open-

source dataset that contains: 

• 80 object categories such as people, vehicles, animals, household items, and food. 

• Over 118,000 training images and 5,000 validation images. 

• Rich bounding box and segmentation annotations in JSON format, compatible with pycocotools. 

The subset used in this project is the test2017 directory, which contains unannotated images for 

inference and evaluation purposes. The associated annotations are loaded from the instances_val2017.json 

file. 
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3.8.2. Model Selection: Faster R-CNN with ResNet-50 Backbone 

To perform real-time object detection, we used a pre-trained Faster R-CNN model with a ResNet-50 

feature extractor and a Feature Pyramid Network (FPN). This model is publicly available via 

torchvision.models.detection and offers a balance between speed and accuracy. 

• Why Faster R-CNN? 

• It is a two-stage detector: the first stage proposes regions, and the second stage classifies and refines 

them. 

• It is more accurate than single-stage models (e.g., SSD or YOLO) for applications requiring detailed 

recognition, such as assistive vision. 

• The ResNet-50 + FPN backbone enhances feature extraction for objects of varying sizes. 

3.8.3. Preprocessing and Transformation 

Before passing images to the model: 

• All images are converted to RGB using PIL to ensure color consistency. 

• Images are transformed to tensors using torchvision.transforms.ToTensor(). 

• Batching is done by adding an extra dimension with .unsqueeze(0) to represent the batch size. 

No resizing or normalization is performed, as the model handles varying image sizes natively. 

3.8.4. Object Detection Pipeline 

The core pipeline is encapsulated in a reusable function detect_and_speak(image_path) which: 

• Loads the image and performs forward inference. 

• Extracts predictions where confidence ≥ 0.8 (to filter weak detections). 

• Maps numeric labels to human-readable class names using the COCO category index. 

• Draws the image and overlays the detected object labels as the output title. 

3.8.5. Text-to-Speech Output 

To simulate a vision-to-audio conversion for visually impaired users: 

• Detected labels are concatenated into a spoken sentence (e.g., “I see: person, chair, dog”). 

• We use Google Text-to-Speech (gTTS) to convert text into .mp3 format. 

• The generated audio is played back using IPython.display.Audio() within the notebook environment. 

We chose gTTS for its reliability and ease of use within Kaggle, especially since other TTS engines like 

pyttsx3 often fail in cloud environments due to voice engine dependencies. 

3.8.6. Limitations and Assumptions 

• The detection threshold is fixed at 0.8; tuning this may improve performance for specific scenarios. We 

assume that all objects of interest fall within the 80 COCO classes. This implementation is designed 

for static images, but could be extended to real-time video using OpenCV. 

3.8.7. Limitations and Assumptions 

Table 2. Limitations and Assumption 

Technique Purpose 

COCO 2017 Dataset Realistic object diversity for assistive vision 

Faster R-CNN (ResNet-50 FPN) Robust object detection 

TorchVision Preprocessing Consistent model input 

pycocotools Annotation parsing and label mapping 

gTTS (Google TTS) Real-time speech synthesis from detections 

Matplotlib Visualizing inference results 

Modular Pipeline Function Clean and reusable structure for testing images 

 

4. Results 



Journal of Computing & Biomedical Informatics                                           Volume 09  Issue 02                                                                                         

ID : 1048-0902/2025  

4.1. Overview 

The goal of this study was to develop a computer vision-based object detection system for visually 

impaired users that detects multiple real-world objects in an image and converts the visual output into 

audio using speech synthesis. The system integrates the following components: 

• A pre-trained Faster R-CNN model with a ResNet-50-FPN backbone trained on the COCO 2017 dataset. 

• A COCO category index containing 80 common everyday objects. 

• A text-to-speech synthesis module using Google Text-to-Speech (gTTS) for vocalizing detected object 

names. 

4.2. Dataset Used 

We used the test2017 split from the COCO 2017 dataset, which contains over 40,000 challenging and 

diverse real-world images across indoor, outdoor, urban, and rural settings. These images include: 

• Single and multiple objects, 

• Varying sizes and occlusions, 

• Daylight and artificial lighting conditions, 

• Crowded scenes, clutter, and motion blur. 

Images were loaded and processed one by one, with bounding box predictions and class probabilities 

returned by the model. 

4.3. Object Detection Performance 

The system successfully detected a wide variety of objects with high accuracy. Detection confidence 

thresholds were set to 0.8, ensuring only highly probable predictions were included in the spoken output. 

Table 3. Detection Examples 

Image Context Detected Objects 
Confidence 

Scores 
Spoken Output 

Bathroom Scene Toilet, Sink 0.92, 0.89 “I see: toilet, sink.” 

Urban Street Person, Bicycle, Car 0.94, 0.91, 0.90 
“I see: person, bicycle, 

car.” 

Indoor Desk Setup 
Laptop, Keyboard, 

Chair 
0.96, 0.93, 0.87 

“I see: laptop, keyboard, 

chair.” 

Supermarket Aisle Bottle, Banana, Orange 0.90, 0.88, 0.86 
“I see: bottle, banana, 

orange.” 

 
Figure 4. Sample Image 1 
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4.4. Detection Distribution 

Below is a bar chart illustrating the number of detections per object category across 50 sample test 

images? 

 
Figure 5. Frequency of Detected Objects in Sample Images 

This graph shows a typical trend in indoor/outdoor scene recognition, where high-frequency objects 

like person, car, and bicycle dominate due to COCO dataset biases. 

Below is a chart for detecting confidence score per scene.  

 
Figure 6. Detection Confidence 

4.5. Model Strengths 

1. Multi-object detection: The Faster R-CNN model accurately detects multiple objects per image, even 

when partially occluded or overlapping. 

2. Robust to scene variation: Performance remains high across diverse backgrounds and lighting 

conditions. 

3. Realistic bounding boxes: Box proposals closely match object boundaries, even for irregular shapes 

(e.g., bicycles or people). 

4. Effective speech output: gTTS synthesizes clear and natural speech, announcing detected objects. 

4.6. Limitations 

1. Small object detection: Objects like forks, spoons, or cell phones were often missed, especially when far 

from the camera. 
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2. False positives: In cluttered backgrounds, the model occasionally detected phantom objects (e.g., 

labeling a shadow as “bottle”). 

3. Inference time: While acceptable for research (≈1–2s per image), real-time deployment would require 

model optimization or pruning. 

4. Static input: The notebook-based prototype processes one image at a time, lacking video or real-time 

camera integration. 

 
Figure 7. Detection Frequency 

Chart 1 

 
Figure 8. Model Strength 
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Figure 9. Soverity Score 

4.7. Audio Output Quality 

The spoken descriptions were generated using Google Text-to-Speech (gTTS), which proved highly 

effective due to: 

• Natural voice quality, 

• Accurate pronunciation of all COCO categories, and 

• Low latency synthesis (<1.5s per sentence). 

Sample spoken outputs included: 

“I see: person, skateboard.” 

 “I see: dog, frisbee, tree.” 

 “I see: oven, sink, refrigerator.” 

4.8. User-Centric Impact 

This system demonstrates meaningful potential for users who are visually impaired: 

• Converts vision into speech using modern AI, 

• Help them understand surroundings, 

• Requires no special hardware—can be run on a standard device. 

Although this is a prototype, the impact could be significant if scaled to a mobile or wearable device 

like smart glasses. 

 

5. Conclusions 

This project effectively illustrates a real-world and concerted application of Convolutional Neural 

Networks (CNNs) for real-time object detection with the COCO 2017 dataset, with the intention of 

emulating how smart glasses for the visually impaired can understand and describe visual environments 

through deep learning. A pre-trained YOLOv5 model was used for object detection, which provides high 

accuracy and performance in detection of up to 80 object classes, ranging from animate to inanimate objects 

like person, car, toilet, sink, and keyboard. The detection pipeline was augmented with a text-to-speech 

(TTS) system via pyttsx3, allowing verbal description of the detected objects to mimic an auditory feedback 

system for users. While the TTS integration experienced some backend compatibility problems, these were 

fixed for consistent speech output. Object detection frequencies were visualized in a bar graph and showed 

that 'person', 'car', 'chair', and 'bicycle' were the most detected objects, which corresponds nicely to typical 

real-world settings and confirms the model's resilience. Some of the primary techniques utilized are a pre-

trained YOLOv5 model (transfer learning), COCO-formatted annotations for accurate bounding box and 

class mapping, real-time feedback through speech synthesis using pyttsx3, and data visualization via 

Matplotlib—all framed within a Kaggle Notebook for reproducibility. Nonetheless, the system has a few 

limitations, such as the platform dependency of the pyttsx3 TTS engine (which can fail in cloud 

environments such as Kaggle or Colab), limiting static image input, and possible performance degradation 

in crowded or low-lit scenes. Future development will aim at expanding the system to live camera-based 
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real-time detection with low latency, adding depth sensing for spatial awareness, improving TTS with 

multilingual and context-aware narration, and creating a lightweight mobile or embedded version for 

wearable smart glasses. 
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