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________________________________________________________________________________________________________ 

Abstract: Diabetic retinopathy (DR) is a leading cause of preventable blindness among working-age 

adults globally, with a significant economic and social burden. Early detection plays a main role in 

preventing the progress of the disease to advanced stages that cause irreversible vision loss. 

Traditional screening methods, although effective, are often resource-intensive and time-consuming. 

This research introduces an AI-powered deep learning approach using Convolutional Neural 

Networks (CNN) to find and categorize diabetic retinopathy from retinal fundus images with high 

accuracy and minimal human intervention. The proposed system is trained and validated on a 

labeled dataset, incorporating advanced preprocessing technique and data augmentation, and the 

model achieved promising results in binary classification (DR vs. No DR), with robust evaluation 

through accuracy, recall, precision, F1-score, and ROC-AUC metrics. Results suggest that the 

developed CNN model can serve as an effective decision-support system for ophthalmologists, 

especially in under-resourced regions. Furthermore, the methodology can be extended to other 

retinal diseases and adapted for mobile diagnostic platforms.  

 

Keywords: Diabetic Retinopathy; Deep Learning; Convolutional Neural Networks; Artificial 

Intelligence 

 

1. Introduction 

1.1. Background 

Diabetic Retinopathy is one of the most severe complications of diabetes, affecting nearly one-third of 

the global diabetic population. It arises from prolonged high blood sugar levels that damage retinal blood 

vessels, swelling, leakage, or abnormal growth of blood vessels in the retina [1]. If not identified and treated 

early, this condition may result in permanent vision loss or blindness. 

According to the World Health Organization, Diabetic Retinopathy is responsible for 4.8% of the 37 

million blindness cases globally. Early detection and intervention are vital in preventing disease 

progression. However, traditional DR screening methods e.g manual fundus image analysis, angiography, 

and optical coherence tomography require specialized equipment and expert ophthalmologists—both of 

which are scarce in many developing countries. Consequently, a large segment of the diabetic population 

remains undiagnosed until irreversible damage has occurred. 

1.2. Problem Statement 

Despite advancements in medical imaging and clinical diagnostics, timely screening of diabetic 

retinopathy remains a challenge due to scarcity of trained ophthalmologists, the high cost of advanced 

diagnostic equipment, and the logistical challenges of regular screenings in remote or under-resourced 

settings. These limitations necessitate the development of an automated, intelligent, and scalable solution 

to assist in early-stage diagnosis and reduce the burden on healthcare systems. 
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Figure 1. Diabetic Retinopathy 

 

1.3. Role of Artificial Intelligence in DR Detection 

Artificial Intelligence (AI), and more specifically deep learning, has arisen as a transformative tool in 

medical diagnostics. Among various architectures, Convolutional Neural Networks (CNNs) have superior 

performance in image classification tasks, including detecting retinal diseases [2]. CNNs are accomplished 

of learning spatial hierarchies of features directly from the data, removing the need for manual feature 

extraction. In this study, a CNN-based model is developed to classify retinal images into Diabetic 

Retinopathy and non-Diabetic Retinopathy categories. The model utilizes advanced data preprocessing, 

augmentation, and an optimized training pipeline using Binary Cross Entropy as Adam and the loss 

function as optimizer. Its performance is assessed using a set of evaluation metrics to determine its clinical 

applicability. While existing models have shown promise, many suffer from issues related to low accuracy 

in early-stage detection, lack of robustness to diverse datasets, or reliance on complex architectures. Our 

study addresses these limitations by proposing a novel convolutional neural network (CNN) architecture 

designed for high-accuracy binary classification of diabetic retinopathy on a large, publicly available 

dataset. 

The objective of this experiment is to find out the advancement of a deep neural network-based early 

detection system for diabetic retinopathy through convolutional neural networks (CNNs). The system is 

trained using the public retinal fundus image datasets, and the end goal is to classify the different stages 

of DR from the absence of Diabetic Retinopathy to proliferative Diabetic Retinopathy. The proposed model 

basically works on CNN architecture, which efficiently extracts the spatial Artificial Intelligence (AI)". 

Importantly, deep learning has shown enormous promise in the dispensation of medical images, even 

ophthalmic imaging [3]. The use of Convolutional Neural Networks (CNNs) has started showing success 

at detecting and classifying diabetes retinopathy stages with retinal fundus images with high accuracy. 

However, deep learning models are able to reduce the amount of human intervention by training on large 

data sets to learn complex patterns and features that can be quite subtle for human experts to discern. 

Using AI aims to improve not only the Speed and accuracy of DR detection but also to build a more 

practical implementation that aids in early intervention strategies geared toward preventing diabetic 

patients from going into severe visual impairment. 

 

2. Literature review 

 Diabetic Retinopathy remains an important cause loss of vision globally, necessitating early detection 

to prevent permanent damage and improve patient outcomes. Traditional screening methods, such as 

dilated eye examinations and fundus photography, face inherent limits including the need for time-

intensive nature, trained personnel and specialized equipment leading to suboptimal screening rates, 

particularly in resource-limited settings [4]  

 Artificial intelligence offers a transformative opportunity to overcome these barriers, enhancing both 

the efficiency of ongoing care management and accuracy of screening Recent advancements, particularly 

in deep learning (DL) and convolutional neural networks (CNNs), this system provides a low-cost solution, 
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its performance metrics are based on a smaller dataset. AI systems examine retinal images with expert-

level accuracy for detection and grading. Studies demonstrate high performance, with AI models achieving 

sensitivity ranging from 83.3% to 100% and specificity from 85% to 92.5% in detecting referable DR or more 

than mild DR [5]. FDA-approved systems like IDx-DR (LumineticsCore) and EyeArt exemplify this 

progress. 

 The integration of AI significantly improves accessibility and efficiency by enabling screenings in 

primary care, remote locations, and even via smartphone-based cameras, thereby reducing the burden on 

healthcare providers and systems. However, challenges persist, including ensuring generalizability across 

various populations, standard image acquisition, and enhancing the interpretability of AI models through 

techniques like Explainable AI (XAI) to build clinician trust. Continued research and validation are crucial 

to optimize AI application ensure its supportable influence on public health. 

Table 1. Comparative Analysis of AI-Driven Approaches for Diabetic Retinopathy Detection 

Paper/Authors 

(Year) 

Study 

Type/ 

Objective 

AI 

Techniques 

Used 

Dataset(s) Used 

Key 

Findings/

Performa

nce 

Metrics 

(for DR) 

Limitations/

Challenges 

Sacchini et al. 

(2025) 

Systematic 

Review 

focusing 

on AI in 

Diabetic 

Retinopat

hy 

screening 

in Type 1 

Diabetes 

(T1D). 

AI (general), 

Autonomous 

AI, ML, DL 

(Inception-V3, 

DenseNet-121, 

VGG16, 

Xception) 

8 studies, 2,717 

participants 

(1,470 with T1D) 

AI 

enhances 

DR 

screening 

in T1D, 

rapid 

analysis, 

positive 

provider 

feedback. 

No European 

studies; 

temporal 

filter to 5 

years 

Wolf et al. 

(2024) 

RCT on 

AI's effect 

on DR 

screening 

participati

on in 

youth 

with T1D. 

Autonomous 

AI system 

EG: 81 (T1D=59), 

CG: 82 (T1D=12) 

85.7% 

sensitivity

, 79.3% 

specificity; 

30.1% 

increased 

adherence

. 

Limited to 

T1D youth 

Alsadoun et al. 

(2024) 

Narrative 

Review on 

AI-

enhanced 

DR 

detection 

from 

fundus 

images. 

AI (general) Not applicable 

Discusses 

technologi

es, 

benefits, 

and 

clinical 

adoption 

challenges

. 

Review only; 

no new data 

Low-Cost AI 

System 

(Undated) 

Proposed 

system for 

DR 

detection 

Custom CNN 

(3.5M 

params), 

Transfer 

Undisclosed 

98.2% DR 

accuracy, 

edge-

cloud 

AlexNet 

slightly 

better for 

Glaucoma 
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in low-

resource 

settings. 

Learning 

(MATLAB-

Retrained 

AlexNet) 

mode, 

70% 

hardware 

cost 

reduction. 

Asif et al. 

(2025) 

Systematic 

Review on 

AI 

evolution/

performan

ce for DR 

detection. 

ML (SVM, 

RF), DL, FL, 

XAI 

EyePACS, 

Kaggle DR, 

MESSIDOR, 

IDRiD, DRIVE, 

etc. 

Fuzzy-

SVM: 98% 

acc, 96% 

sens, 97% 

spec. DL 

AUC > 

0.90. 

High risk of 

bias, 

inadequate 

reporting 

Selvi et al. 

(2024) 

Comprehe

nsive 

Review on 

AI for DR 

diagnosis/

classificati

on. 

CNNs, U-Net, 

ResNet50, 

DITL, etc. 

OCTA, 

EyePACS, 

MESSIDOR, etc. 

DL: 98–

99% 

accuracy, 

high AUC 

on various 

datasets. 

Dataset 

quality, 

interpretabili

ty, 

generalizatio

n issues 

Samad et al. 

(Undated) 

Enhancing 

DR early 

detection 

with DL 

and XAI. 

Proposed 

CNN, 

Transfer 

Learning, 

RNN, SVM 

Kaggle Aptos, 

Messidor2, 

IDRiD 

95.27% 

accuracy 

multiclass, 

100% 

binary; 

robust 

external 

testing. 

Needs 

balanced 

datasets in 

high-diabetes 

regions 

Zhang et al. 

(2020) 

Real-

world 

multicente

r AI-based 

DR 

screening 

in China. 

DL five-stage 

DR 

classification 

47,269 patients; 

validated on 

15,805 

83.3% 

sensitivity

, 92.5% 

specificity; 

autonomo

us 

decision 

support. 

Low-quality 

image issues 

in clinics 

Qian et al. 

(2022) 

Evaluatin

g AI 

grading 

system for 

DR. 

AI-based 

automated 

grading 

2,766 images 

0.965 

acc/sens/s

pec, 0.980 

AUC; 

better 

PPV/NPV, 

lower 

FP/FN. 

Not specified 

Natarajan et al. 

(2019) 

Offline AI 

algorithm 

for DR on 

smartpho

ne retinal 

images. 

Offline AI 

Images from 

Mumbai 

dispensaries 

100% 

sensitivity

, ~82–88% 

specificity 

(varied by 

quality). 

Small 

sample, no 

severity 

grading 
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3. Methodology 

 The methodology of this research outlines the complete pipeline used to develop and evaluate a 

Convolutional Neural Network based system for the early detection of Diabetic Retinopathy from fundus 

images of retina. This section is broken down into distinct phases, including data preparation, model 

architecture, training procedure, evaluation metrics, and visual analytics. Every term and process has been 

explained in detail for clarity and academic completeness. 

3.1. Dataset Description 

 In this study data set used retinal fundus images labeled according to the presence or absence of 

Diabetic Retinopathy [6]. Each image belongs to one of the following categories: 

• Class 0 – Normal 

• Class 1 – Diabetic Retinopathy Present (Mild to severe signs of DR) 

 

Channa et al. 

(2023) 

Policy 

Model 

comparin

g AI vs 

ECP-

based 

screening. 

Autonomous 

AI vs Eye 

Care Provider 

(ECP) 

Derived from 

prevalence and 

diagnostic data 

AI 

prevents 

27,000+ 

vision loss 

cases in 5 

yrs; higher 

sensitivity

. 

Modeling 

assumptions; 

not 

empirically 

tested 

Ting et al. 

(2019) 

Review of 

AI in DR 

screening. 

DL (AlexNet, 

VGGNet, 

Inception-

V3/4) 

EyePACS-1, 

Messidor-2, etc. 

DL: AUC 

up to 

0.991, 

97.5% 

sensitivity

, 93.4% 

specificity. 

Barriers in 

clinical 

implementati

on 

Abdalla & 

Mohanraj 

(Undated) 

Review on 

AI/ML in 

DR 

detection. 

DL (CNNs), 

ML (SVM, RF, 

LR) 

Not applicable 

DL more 

scalable, 

ML needs 

pre-

extracted 

features. 

Review only 

Sobhi et al. 

(2025) 

Review on 

AI in DR 

and 

related 

diabetes 

complicati

ons. 

AI, ML, DL 

(Sandhu et al.) 

OCT/OCTA, 111 

patients 

98.7% 

accuracy, 

100% sens, 

0.981 AUC 

(Sandhu). 

Image 

quality, 

labeling cost, 

bias/privacy 

issues 

Yao et al. (2024) 

Overview 

of AI for 

DR and 

DME. 

AI, DL 

SMART India, 

smartphone 

images 

AUC 

~0.98–0.99; 

89% sens, 

83% spec 

on 

smartpho

ne. 

Low 

resolution in 

handheld 

images 
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Figure 2. Dataset Image Paths 

 

 

 
Figure 3. Distribution of Labels 
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Figure 4. Images side-by-side with 0 1 classification 

 

 These labels form the ground truth, serving as the reference usual against the model’s predictions are 

compared during evaluation. The dataset is structured for training and testing subsets to enable both model 

learning and unbiased performance evaluation. 

3.2. Data Preprocessing 

 Preprocessing is essential to standardize inputs, improve performance, and increase the 

generalizability of the model. The following steps were applied: 

3.2.1. Image Resizing 

 Retinal images are typically of high and varying resolutions. For uniformity and computational 

feasibility, all images are resized to 224 × 224 pixels, the standard input size for many CNN architectures. 

3.2.2. Normalization 

 To speed up learning and ensure numerical stability, pixel values were scaled to the range [0, 1] by 

dividing each pixel by 255. This ensures that all input data is on the same scale. 

3.2.3. Data Augmentation 

 Data augmentation reduce overfitting by artificially increase the diversity of the training dataset. 

Techniques used include: 

• Rotation (±15 degrees): Simulates camera angle variability 

• Horizontal/Vertical Flipping: Simulates left/right or top/bottom eye capture 

• Zooming: Introduces scale variance 

• Brightness/Contrast Adjustments 

These transformations ensure the model learns robust features invariant to orientation and lighting 

conditions. 
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Figure 5. Images resizing 

 
Figure 6. Retinopathy Images 



Journal of Computing & Biomedical Informatics                                           Volume 09  Issue 02                                                                                         

ID : 1034-0902/2025  

 
Figure 7. Sample of augmented images side-by-side with original versions. 

3.3. Convolutional Neural Network Architecture 

 CNNs are a specialized class of neural networks designed for visual pattern recognition. Our custom 

architecture contains many layers, each responsible for extracting and interpreting different levels of 

features from the input image. 

3.3.1. Input Layer 

Accepts input of shape 224x224x3, where: 

• 224 × 224 = image height and width 

• 3 = RGB channels (color image) 

3.3.2. Convolutional Layers 

Each convolutional layer applies filters (kernels) to extract features such as edges, curves, and textures. 

• First Convolutional Layer: 32 filters (3x3), followed by ReLU 

• Second Convolutional Layer: 64 filters, deeper texture extraction 

• Third Convolutional Layer: 128 filters, complex patterns (e.g., vessels, hemorrhages) 

Mathematically, convolution is: 

• Feature Map=(I∗K) +b 

• I = Input Image 

• K= Kernel (filter) 

• b = Bias 

3.3.3.  Activation Function (ReLU) 

ReLU (Rectified Linear Unit) is used to introduce non-linearity: 

• f(x)=max (0, x) f(x) 

It helps the model to learn complex patterns by ignoring negative activations. 

3.3.4. Max Pooling Layer 

Reduces spatial dimensions while preserving important features: 
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• Pool Size: 2x2 

• Operation: Takes the maximum of every 2x2 block 

This reduces computation and controls overfitting. 

3.3.5. Dropout Layer 

Randomly "drops" neurons during training (rate = 0.5) to: 

• Prevent overfitting 

• Encourage redundancy 

3.3.6. Flatten Layer 

Transforms the final 3D feature map into a 1D vector to feed into Dense (fully connected) layers. 

3.3.7. Fully Connected Layer 

Dense layer with 128 neurons and ReLU. This combines features learned in convolutional layers and 

predicts class probabilities. 

3.3.8.  Output Layer 

A single neuron with a sigmoid activation function to output probability between 0 and 1: 

• P=11+e−zP 

Where: 

• z = weighted input from previous layer 

• Function used for CNN processing: 

 
 

 
Figure 7. Visual diagram of CNN architecture 

3.4. Loss Function and Optimizer 

3.4.1. Binary Cross Entropy Loss 
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Used for binary classification: 

 Loss= − [y log(y^) +(1−y) log(1−y^)] 

• y = true label (0 or 1) 

• y^ = predicted probability 

Lower loss indicates better alignment of predictions with ground truth. 

3.4.2. Optimizer – Adam 

Adam combines the benefits of Momentum and RMS Prop: 

• Adjusts learning rate adaptively 

• Parameters: 

▪ Learning rate: 0.001 

▪ Beta1 = 0.9 (momentum for mean) 

▪ Beta2 = 0.999 (momentum for variance) 

3.5. Training Configuration 

• Epochs: 20 (entire dataset passed 20 times) 

• Batch Size: 32 (mini-batches for gradient updates) 

• Validation Split: 20% of training data reserved for validation 

• Early Stopping: Monitors loss and stops training to avoid overfitting 

Figure 8. Training and validation loss graph and Training and validation accuracy graph 

3.6. Evaluation Metrics 

3.6.1. Confusion Matrix 

Accuracy: 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 

Precision: 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 

Recall: 𝐑𝐞𝐜𝐚𝐥𝐥 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
  

F1 Score: 𝐅𝟏 =
𝟐 𝒙 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒙 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
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Figure 9. Confusion Matrix 

3.6.2.  ROC Curve & AUC 

 
Figure 10. ROC Curve: Plots False Positive Rate vs. True Positive Rate 

 Overall, this methodology strategically combines robust data preprocessing, convolutional neural 

network (CNN) architecture, and fine-tuned training using the Adam optimizer and cross-entropy loss 

function. This approach not only ensures effective feature extraction from retinal images but also optimizes 

classification accuracy across varying stages of diabetic retinopathy. Each phase—from normalization and 

augmentation to model training and evaluation—has been rigorously designed to enhance generalizability 

and clinical relevance [7]. With a strong foundation in both computational precision and clinical 
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applicability, the proposed methodology sets the stage for impactful and scalable AI-assisted diabetic eye 

disease screening. 

 

4. Results and Discussion  

After training the CNN model over 20 epochs, we evaluated its performance on a separate test dataset. 

The results demonstrate the model's effectiveness in identifying diabetic retinopathy from retinal fundus 

images. 

4.1. Performance Metrics Overview 

Table 2. Performance Metrics Overview 

Metric Value 

Accuracy 91.2% 

Precision 89.6% 

Recall (Sensitivity) 92.1% 

F1 Score 90.8% 

ROC – AUC 0.946 

4.2. Interpretation 

• Accuracy of 91.2% implies the model correctly predicted most cases. 

• Recall (92.1%) is particularly important in medical diagnostics as it reflects the ability to identify 

positive (DR) cases without missing them. 

• Precision (89.6%) ensures the model does not over diagnose DR, which could lead to unnecessary 

anxiety or treatment. 

• The F1-score harmonizes both metrics, while the ROC-AUC of 0.946 confirms excellent classification 

power. 

Table 3. Interpretation 

label precision recall F1-score support 

accuracy 94% 94% 0.94 2076 

macro avg 95% 94% 0.94 2076 

weighted avg 95% 94% 0.94 2076 

The learning curves (Figures 9 & 10) demonstrate stable convergence, with training and validation 

losses decreasing over time, indicating effective generalization without overfitting. 

4.3. Visual Results 

 
Figure 11. Visual results 

For better visuals: 

1. Histogram of Oriented Gradients 
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Concept: HOG captures edge and gradient information from an image by computing the direction 

and magnitude of pixel gradients in local regions [8]. The gradients are then binned into histograms, 

providing a robust descriptor of object shapes. 

Applications: HOG can be used to detect abnormalities in medical images like retinal scans or X-rays. 

For instance, it can help detect irregular shapes or lesions in the retina for diabetic retinopathy detection. 

2. Local Binary Patterns (LBP) 

Concept: LBP is a texture descriptor that compares each pixel with its neighbors [9]. It encodes the 

result as a binary pattern and creates a histogram of these patterns to represent texture information. 

Applications: LBP can be used for tumor classification in MRI scans or CT scans by distinguishing 

between healthy and abnormal tissue based on texture patterns, such as detecting subtle changes in the 

skin or brain tissue. 

3. Scale-Invariant Feature Transform (SIFT) 

Concept: SIFT detects distinctive key points in images that are invariant to scale, rotation, and partially 

to illumination changes. Each key point is described by a feature vector based on local gradients. 

Applications: SIFT can help in matching and aligning 3D scans (e.g., in CT or MRI) to detect tumors 

or lesions across different scans or time points, making it useful in monitoring disease progression. 

These visuals help interpret where the CNN model is focusing during its decision-making, improving 

clinical trust in AI systems. The comparative evaluation of diverse AI-driven approaches for diabetic 

retinopathy detection highlights the remarkable progress made in terms of analytic sensitivity, accuracy, 

and specificity across multiple models and datasets. While traditional machine learning models still play 

a valuable role, deep learning architectures—particularly CNN-based and transfer learning techniques 

have consistently demonstrated superior performance in both binary and multiclass DR classification tasks 

[10]. Despite notable achievements, several challenges remain, including dataset imbalance, limited 

generalizability across populations, and interpretability of complex models. These findings underscore the 

growing maturity of AI in this domain and reinforce its possible to transform early screening and clinical 

decision-making in real-world diabetic eye care. 

 

5. Significance and Future Applications 

This research contributes significantly to the intersection of healthcare and artificial intelligence: 

• Clinical Support: Provides a fast, automated, and scalable screening tool for early DR detection. 

• Resource Optimization: Reduces reliance on expert ophthalmologists for initial screenings. 

• Telemedicine: Can be deployed in mobile or cloud-based platforms to reach underserved populations. 

• Extensibility: The architecture can be extended to other retinal diseases like macular degeneration or 

glaucoma. 

• Model Explain ability: Use of visual interpretability techniques (like Grad-CAM) enhances clinical 

adoption [11]. 

Future Applications 

• Integration with smartphone-attached retinal cameras for on-the-spot diagnostics. 

• Embedding the model in clinical decision support systems. 

• Federated learning to preserve data privacy across hospitals while training on large-scale datasets. 

 

6. Conclusion 

Diabetic Retinopathy is a preventable yet widespread complication of diabetes, particularly 

dangerous due to its asymptomatic onset and potential for permanent vision damage. This study proposed 

a CNN-based model capable of early detection of DR using fundus images of retina. With robust 

preprocessing, a well-structured CNN architecture, and thorough evaluation, the model achieved high 

accuracy, precision, and recall. Furthermore, visual tools like heat maps ensure transparency in AI 

decision-making, fostering trust among clinicians. 

The integration of AI into ophthalmology promises to revolutionize preventive care, especially in 

remote or underdeveloped regions. By enabling fast, accurate, and automated screenings, this work lays 

the foundation for scalable diagnostic systems, aligning with the global goal of reducing avoidable 

blindness through early detection and intervention [12]. 
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