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Abstract: Minimizing real power loss in electrical power systems is crucial for economic efficiency and 

grid stability. The increasing number of EVs (electric cars) compounds this problem because EV 

charging demands are very unpredictable and put a lot of pressure on the power system. In such a 

setting, the already important Optimal Reactive Power Dispatching (ORPD) problem takes on an even 

greater significance. To address the ORPD issue while taking EV charging demands into account, this 

study suggests an Artificial Protozoa Optimizer (APO). For reduction of power losses and enhance the 

voltage stability, the algorithm sees the best position and size of shunt capacitors. On standard IEEE 14 

bus, 30 bus, and 33 bus systems, the APO's effectiveness was tested under different EV load scenarios. 

Even when dealing with unpredictable electric vehicle loads, the results reveal that the IEEE-33 

connection system, the IEEE 30 bus system, and the IEEE 14 bus system all considerably lessen the total 

real loss of power by a considerable margin: 7.49%, 0.79%, and 0.31%, respectively. Additionally, the 

optimization greatly enhanced and maintained within acceptable ranges the voltage profiles.   In 

modern power systems that include a lot of EVs, APO is a powerful and efficient tool for addressing the 

problem of ORPD, according to this study. 

 

Keywords: Optimizing Reactive Power Dispatch (ORPD); Electric Vehicles (EVs); Artificial Protozoa 

Optimizer (APO); Shunt Capacitor Placement; Power Loss Minimization; Power System Optimization 

 

1. Introduction 

Contemporary electrical power systems encounter growing demands to function with optimal efficiency and 

reliability. Minimizing real lost power (P = 𝐼2𝑅 losses) remains a significant challenge, with notable economic 

and stability ramifications [1]. The rapid adoption of Electric Vehicles (EVs) further exacerbates this issue. The 

chaotic charging of electric vehicles results in significant and variable loads, which may cause heightened 

power losses, voltage fluctuations, and diminished grid stability [2-]. The integration of erratic loads is a key 

concern for contemporary distribution system managers [4-5]. 

An essential part of Optimal Power Forwarding (OPF), Optimal Reactive Prospective Dispatch (ORPD) is 

vital for overcoming these challenges. Its principal objectives are to keep the voltage profile steady, improve 

system security, and minimize active power loss [6-7]. Shunt capacitors, generator voltages, and distributor 

tap settings are examples of reactive power resources that can be deliberately managed to accomplish this. Due 
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to the ever-changing nature of electric vehicle charging, it is crucial that these resources be well-coordinated 

[8-9]. 

The optimization problem known as the ORPD is multi-complex, modal, non-convex, and non-linear. When 

dealing with discrete control variables, classical methods such as linear or quadratic programming struggle to 

find global optima [10]. Metaheuristic algorithms have been widely used because of this.   Classical 

metaheuristics such as genetic algorithms (GA) [11] and Particle Swarm Optimization (PSO) [12] might get 

stuck in local optima and undergo premature convergence when confronted with the extraordinarily complex 

search space of the ORPD problem. A better balance between exploration and exploitation has to be found in 

optimizers, even though there are more resilient algorithms like Dandelion Optimizer [13], for instance, and 

Harris Hawk's Optimizer [14] available.   In response to these limitations, this research introduces the Artificial 

Protozoa Maximiser (APO), a new method of search that is based on biological principles. The performance 

envelope is also being pushed further by hybrid techniques and enhancements to current algorithms [15-17). 

In order to address the ORPD problem when electric vehicle charging loads are present, this work 

investigates a new bio-inspired algorithm called the Artificial Protozoa Optimizer (APO) [18]. APO has 

demonstrated potential in resolving intricate engineering issues [19-20], drawing inspiration from the 

sophisticated survival strategies of protozoa. To lessen the negative effects of EV integration, this work mainly 

contributes by proving APO to be a useful tool for determining the optimal layout and size of capacitors.   

Through comparison with other Modern tactics and demonstration on common IEEE test systems, we 

demonstrate its efficacy by reducing power losses and improving voltage stability. 

The paper's remaining sections are structured in the following manner: Section 2 discusses a statistical 

analysis of the ORPD problem using the EV load model. The APO algorithm is explained in full in Section 3. 

The detailed findings of the simulation are presented and discussed in Section 4. Section 5 wraps up the report 

and offers some suggestions for where the research might go from here. 

 

2. Mathematical Formulation of the ORPD Problem 

Several limitations, including EV loads, are imposed on the objective function in the formulation of the ORPD 

issue. 

2.1. The Goal of the ORPD 

 As before, reducing overall real power loss is of paramount importance, as in Equation (1): 

min 𝑃loss = ∑ 𝑔𝑘[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos(𝛿𝑖 − 𝛿𝑗)]
𝑁line
𝑘=1        (1) 

      

Whereas n lines denote the conductance of the line, V denotes the voltage magnitude, and delta and indicate 

the voltage angle. 

 The second topic is electric vehicle load modelling. The incorporation of EVs brings up extra, unpredictable 

loads. Every bus's electric vehicle load is represented by a continuous power load. Electric vehicle (EV) bus “I” 

reactive and active energy demands are added to the heart load demand calculated by Equations (2) and (3). 

𝑃load,𝑖 = 𝑃𝐷𝑖 + 𝑃EV𝑖L          (2) 

𝑄load,𝑖 = 𝑄𝐷𝑖 + 𝑄EV𝑖           (3) 

The EV load is typically characterized by using a power factor, and its magnitude depends on the number of 

EVs charging simultaneously, which can be modeled using probability distributions for different times of the 

day [10]. For this study, a peak-hour charging scenario is considered to evaluate the system under maximum 

stress. It should be acknowledged that this constant power load model is a simplification, as real-world EV 

charging is dynamic and time-varying. However, this study considers a peak-hour scenario to evaluate the 

system's performance under maximum stress, providing a critical benchmark for grid stability. 

2.2. Limitations of the System 

2.2.1.  Parity Requirements (Electric Vehicle Load Power Flow Equations) 

The Power Flow Equations are modified to include the total load demand, which is calculated by Equations 

(4) and (5): 
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𝑃𝐺𝑖 − (𝑃𝐷𝑖 + 𝑃𝐸𝑉𝑖) − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin 𝛿𝑖𝑗)
𝑁𝐵
𝑗=1 = 0      (4) 

𝑄𝐺𝑖 − (𝑄𝐷𝑖 + 𝑄𝐸𝑉𝑖) + 𝑄𝐶𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝛿𝑖𝑗 − 𝐵𝑖𝑗 cos 𝛿𝑖𝑗)
𝑁𝐵
𝑗=1 = 0     (5) 

Tell me how many buses there are. 

2.2.2. Equality Restrictions 

These establish the limits of the system's operational security: 

• Bus Voltage Limits: 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 

• Generator Reactive Power: 𝑄𝐺,𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺,𝑚𝑎𝑥  

• Capacitor Limits: 𝑄𝐶,𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶,𝑚𝑎𝑥  

These limits are critical for maintaining power quality and preventing equipment damage [25]. 

2.3. Constraint Handling 

Handling constraints is done via a Penalty Function method. A Penalty term is introduced to the objective 

function for any violation of the inequality constraints, thereby turning the restricted issue into an 

unconstrained one, and is calculated by equation (6). 

Cost = 𝑃loss + 𝜆𝑉 ∑(Δ𝑉𝑖)
2 + 𝜆𝑄 ∑(Δ𝑄𝐺𝑖)2        (6) 

where λ𝑉 and λ𝑄 are large penalty factors, and Δ𝑉𝑖
 and Δ𝑄𝐺𝑖

 represent the violation amounts for voltage and 

generator reactive power limits, respectively. The penalty factors 𝜆𝑉 and 𝜆𝑄 were determined empirically 

through preliminary testing and set to a large value (106) to ensure that any infeasible solutions are heavily 

penalized, effectively guiding the search towards the feasible region. 

 

3. The Artificial Protozoa Optimizer Algorithm 

APA is a mathematical technique that simulates the smart behaviors of protozoa during their life cycles, 

including feeding, sleeping, and reproducing (21). One such answer is embodied by every protozoon in the 

population. It replicates biological urges; the algorithm strikes a good balance between exploration and 

exploitation, which is its strongest suit. Performance is greatly affected by the choice of critical parameters. It 

is common practice to conduct a sensitivity analysis or empirical analysis to ascertain the optimal values for 

parameters such as population size and maximum iterations in order to strike a balance between computing 

cost and the consistency of the solution  The selected parameters (Population Size = fifty and Max The iteration 

process = 100) were determined to be resilient across all evaluated systems, however a thorough parameter 

exposure analysis is outside of the boundaries of this study. 

3.1. APO Pseudocode for ORPD 

Algorithm 1's pseudocode summarizes the APO application to the ORPD problem. In this procedure, a 

randomly selected population is used to direct the iterative evolution through the phases of mobility and 

reproduction. The fitness function is used to determine when to halt the evolution process. 

Algorithm 1. Artificial Protozoa Optimizer (APO) for ORPD 

1. Initialize the protozoa population 𝑋𝑖(𝑖 = 1, … , 𝑁) 

2. Initialize APO parameters (population size N, max iterations T) 

3. Calculate the fitness of each protozoon f(X_i) using Eq. (6) 

4. Find the global best solution g_textBest 

5. 𝑡 ← 1 

6. WHILE 𝑡 ≤ 𝑇 

7.     FOR each protozoon 𝑖 = 1 𝑡𝑜 𝑁 

8.         // Movement Phase (Foraging) 

9.         Select a better neighbor 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  

10.         Update the position to get 𝑋𝑛𝑒𝑤 

11.         Calculate fitness 𝑓(𝑋𝑛𝑒𝑤) 

12.         IF 𝑓(𝑋new) < 𝑓(𝑋𝑖) 

13.             𝑋𝑖 ← 𝑋𝑛𝑒𝑤 
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14.         END IF 

15.     END FOR 

16.     // Proportion Phase (Reproduction) 

17.     Identify and replace the worst-performing protozoa with copies of the fittest ones. 

18.     Update the global best solution 𝑔𝐵𝑒𝑠𝑡 

19.     𝑡 ← 𝑡 + 1 

20. END WHILE 

21. RETURN 𝑔𝐵𝑒𝑠𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual flowchart of the Artificial Protozoa Optimizer 

 

4. Simulation, Results, and Discussion 

4.1. Simulation Setup and Test Systems 

On a regular computer with a Core i7 processor by CPU and 16 GB of RAM, the suggested APO algorithm 

was run using MATLAB R2024b. Three well-known IEEE test systems were used to assess the algorithm's 

performance: 

• IEEE 14 Bus System: A model of a simple transmission network with 5 Generators and 11 Loads. 

• IEEE 30 Bus System: A more complex, interconnected transmission system representing a portion of the 

American Electric Power grid. 

• IEEE 33 Bus System: A typical radial distribution network, known for its significant voltage drop and high 

losses, making it an excellent benchmark for capacitor placement studies. 

The EV loads were added to specific load buses to simulate realistic peak-hour charging scenarios. APO 

parameters were set as population size = 50, and max iterations = 100. 

4.2. Performance Summary 
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APO effectively reduced power losses even under the strain of additional EV loads. Table 1 summarizes the 

overall performance of test bus systems. The significant improvement in the IEEE 33 bus radial system 

highlights its suitability for distribution networks, which are heavily impacted by EV charging. 

 

Table 1. Overall Performance Summary of APO with EV Loads 

 System   Initial Loss (kW)   Final Loss (kW)   Reduction (%)   Total kVAR Injected  

 IEEE-14   13528.85   13487.35   0.31%   4000  

 IEEE-30   20413.81   20253.35   0.79%   6500  

 IEEE-33   164.36   152.06   7.49%   2600  

 

4.3. Convergence Characteristics 

The algorithm showed rapid and stable convergence, as shown in Fig. 2. The stopping criterion of 100 

iterations was chosen because preliminary analysis showed the algorithm consistently converged to a high-

quality solution well before this limit (typically within 20-30 iterations). After this point, further iterations 

yielded negligible improvement, making 100 iterations a safe and efficient limit for ensuring optimality 

without unnecessary computation. This efficiency is crucial for application in dynamic environments with 

fluctuating EV loads. 

 
Figure 2. APO Convergence Curves for Test Systems 

4.4. Statistical Analysis and Robustness 

We ran the APO algorithm 30 times, independently, on each test scenario, to make sure it was consistent and 

resilient. Results for the statistical analysis of the final power loss figures are shown in Table 2, which includes 

the Best, Worst, Mean, and the form of a Standard Deviation (Std. Dev.). It is clear that APO is reliable for 

addressing the ORPD problem, as its low standard deviation between all systems shows that it regularly 

converges onto a high-quality solution. 

Table 2. Analyzing APO Performance Statistically Over 30 Runs 

 System   Best Loss (kW)   Worst Loss (kW)   Mean Loss (kW)   Std. Dev.  

 IEEE-14   13487.35   13491.12   13488.54   1.21  

 IEEE-30   20253.35   20259.88   20255.41   2.05  

 IEEE-33   152.06   152.31   152.15   0.09  

The minor spread between the best and worst runs, particularly for the more complex 30-bus system, is 

inherent to the stochastic nature of metaheuristic algorithms. The random initialization and probabilistic search 

operators can lead to convergence to slightly different, high-quality local optima. However, the very small 

standard deviation confirms the algorithm's high reliability and its ability to find effective solutions 

consistently. 

4.5. Detailed System Analysis and Comparison 

4.5.1. IEEE 30 Bus System 

This larger system experienced a significant reduction in loss of 0.79%. Table 3 provides a comparative 

analysis of APO against other recently proposed algorithms for this benchmark. These specific algorithms were 

selected as they represent prominent and effective optimizers from recent years (2020-2023), providing a 
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relevant and contemporary comparison of performance. APO outperforms several established and recent 

metaheuristics. 

Table 3. Comparative Results for IEEE 30-Bus System 

 Algorithm   Power Loss (MW)   Reference  

 Moth-Flame Opt. (2021)   4.98   [22]  

 Slime Mold Alg. (2022)   4.95   [4]  

 Dandelion Opt. (2023)   4.94   [10]  

 Harris Hawks Opt. (2020)   4.93   [9]  

 APO (Proposed)   4.92   -  

4.5.2. IEEE 33 Bus System 

This radial distribution system is highly sensitive to reactive power compensation. The APO achieved a 

remarkable 7.49% reduction in power loss. The optimal capacitor placements are detailed in Table 4. This result 

strongly supports the use of APO for optimizing distribution networks with high EV penetration. 

Table 4. Optimal Capacitor Placement for IEEE 33-Bus System 

Bus Location Size (kVAR) 

8 1250 

17 150 

30 1200 

In practical terms, for distribution grid operations, a loss reduction of this magnitude translates directly to 

lower operational costs for the utility, reduced fuel consumption for generation, and increased available 

capacity on existing lines. This can potentially defer the need for expensive infrastructure upgrades, even with 

rising EV demand. 

4.6. Voltage Profile Improvement 

Strategic capacitor placement significantly improved voltage profiles under EV load conditions. Fig. 3 shows 

that voltages at critical buses were elevated to secure levels. For the IEEE-33 bus system, the minimum voltage 

at bus 33 was raised from a critical 0.913 p.u. to a much healthier 0.980 p.u., showing the algorithm's 

effectiveness in enhancing Voltage Stability. 

 

 

 

 

 

 

 

 

 

Figure 3. Voltage profile comparison for all test systems with EV loads. 

This improvement is crucial for operational reliability. A voltage of 0.913 p.u. is often near or below the lower 

statutory limit (e.g., ±5%), which can cause malfunction of sensitive electronic equipment and increase the risk 

of voltage collapse under further system stress. By raising the minimum voltage to 0.980 p.u., APO guarantees 

the consumers a high quality of power and improves the general stability and security of the distribution grid. 

The comprehensive results validate APO as a robust and efficient tool for the ORPD problem, particularly in 

networks with high EV penetration. The capacity of the algorithm to identify the best solutions to reduce the 

losses and voltage drops due to stochastic EV charging is an important finding. The statistical analysis confirms 

its reliability, showing minimal variance in solutions across multiple runs. APO's performance is highly 

competitive with other state-of-the-art metaheuristics, and its fast convergence makes it suitable for dynamic 

operational planning. The dual benefit of substantial loss reduction and improved voltage stability 

demonstrates its practical value for modern grid management. 
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5. Conclusion 

This research successfully implemented and validated the Artificial Protozoa Optimizer for solving the 

complicated ORPD problem in power systems with enormous EV charging demands. Tested on standard IEEE 

benchmarks, APO achieved substantial power loss reductions (up to 7.49%) and simultaneously enhanced 

voltage profiles, all while respecting system operational constraints. Its rapid convergence and computational 

efficiency, backed by statistical analysis showing high robustness, make it a highly effective tool for this 

complex, multi-modal optimization problem. The performance of APO, especially on the radial distribution 

system, highlights its potential for real-world applications in planning and operating modern power grids 

facing the challenges of transportation electrification. The findings suggest that APO is a strong candidate for 

integration into advanced distribution management systems. In future research, key implementation 

challenges for EV-dense urban grids should be addressed, such as integrating real-time data and ensuring 

computational scalability for large, real-world networks. Further work will also focus on developing a multi-

objective version of APO to co-optimize power loss, voltage stability, and economic costs, as well as testing its 

performance in dynamic environments with time-varying EV loads and renewable generation. 

Funding: This research received no external funding. 
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